Campus Araxá

PROJETO PEDAGÓGICO DO CURSO DE ENGENHARIA DE AUTOMAÇÃO INDUSTRIAL -CAMPUS ARAXÁ

Versão: Projeto de Reestruturação

MINISTÉRIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

DIRETORIA DE GRADUAÇÃO

Flávio Antônio dos Santos **Diretor-Geral**

Maria Celeste Monteiro de Souza Costa **Vice-Diretora**

Danielle Marra de Freitas Azevedo **Diretora de Graduação**

Giani David Silva **Diretora-Adjunta de Graduação**

Birgit Yara Frey Riffel **Diretora do Campus Araxá**

Comissão de reestruturação - Portaria DIRGRAD nº 004/15, de 16 de março de 2015:

- Prof. Kleber Lopes Fontoura (Presidente);
- Prof. Alexandre Dias Linhares;
- Prof. João Cirilo da Silva Neto;
- Prof. Luís Paulo Fagundes;
- Prof. Paulo Azevedo Soave;
- Prof. Wanderley Alves Parreira

Comissão de reestruturação - Portaria DIRGRAD nº 021/16, de 10 de novembro de 2016:

- Prof^a. Renata Calciolari (Presidente);
- Prof. Alexandre Dias Linhares;
- Prof. Frederico Duarte Fagundes;
- Prof. João Cirilo da Silva Neto;
- Prof. Kleber Lopes Fontoura;
- Prof. Paulo Azevedo Soave;
- Prof. Wanderley Alves Parreira

Comissão de reestruturação - Portaria DIRGRAD nº 08/20, de 11 de março de 2020:

- Prof. Sérgio Luiz da Silva Pithan (Presidente)
- Prof. Kleber Lopes Fontoura
- Prof. Alexandre Dias Linhares
- Profa. Renata Calciolari
- Prof. Frederico Duarte Fagundes
- Prof. Wanderley Alves Parreira

Revisora do texto: Jacqueline de Sousa Borges de Assis

Araxá - MG Maio/2020

LISTA DE QUADROS

Quadro 1 - Descrição dos conteúdos obrigatórios	50
Quadro 2 - Descrição de conteúdos optativos	50
Quadro 3 - Principais programas e projetos da Instituição	127
Quadro 4 - Programas desenvolvidos e setores responsáveis	132
Quadro 5 - Corpo docente do curso de Engenharia de Automação Industrial do	CEFET-
MG/Campus Araxá	163
Quadro 6 - Técnicos administrativos do CEFET-MG/Campus Araxá	164
LISTA DE TABELAS	
Tabela 1 - Alunos ingressantes, formados e evadidos por ano	21
Tabela 2 - Cenário das turmas ingressantes nos seis primeiros anos do curso	
Tabela 3 - Monitores selecionados por ano	
Tabela 4 - Disponibilidade atual das salas de aula no período vespertino (em horas-aula	a)27
Tabela 5 - Composição da carga-horária total do curso	51
Tabela 6 - Síntese da distribuição de carga horária do curso	118
Tabela 7 - Distribuição de carga horária obrigatória por eixo	119
Tabela 8 - Classificação das disciplinas obrigatórias pelas Diretrizes Curriculares Nacio	nais dos
Cursos de Graduação em Engenharia	120
Tabela 9 - Matriz curricular	121
Tabela 10 - Atividades curriculares obrigatórias	125
Tabela 11 - Proposta de oferta dos currículos simultâneos, semestre a semestre, a partir	de 2020
	145
Tabela 12 - Análise do aumento de carga horária por período	152

FICHA DE IDENTIFICAÇÃO DO CURSO

Denominação do Curso	Engenharia de Automação Industrial
Titulação acadêmica conferida	Bacharel em Engenharia de Automação Industrial
Modalidade de ensino	Presencial
Carga Horária Total	3650 horas ou 4830 h/a
Turno de funcionamento	Integral
Endereço de funcionamento	Av. Ministro Olavo Drummond, 25 - Bairro São Geraldo - Araxá – MG - CEP: 38.180-510
Regime letivo	Semestral
Número de vagas autorizadas	40
Número de vagas por processo seletivo	40
Periodicidade do processo seletivo	Anual
Formas de Ingresso	Processo Seletivo, transferências e obtenção de novo título
Tempo para Integralização	Previsto: 10 semestres
Curricular	Máximo: 15 semestres
(Duração do Curso)	Mínimo: 10 semestres – 5 anos (conforme Res. CNE n° 2/2007)
Ato Autorizativo de Criação do Curso	Res. CD n° 85/2005
Ato autorizativo de funcionamento	Res. CD n° 85/2005
Código e-MEC:	87862
Ato regulatório de reconhecimento do curso	Portaria MEC nº 469, de 22 de novembro de 2011.
Ato regulatório de renovação de reconhecimento do curso	Portaria MEC nº 914, de 27 de dezembro de 2018.

SUMÁRIO

1 INTRODUÇÃO	7
1.1 Contextualização do CEFET-MG e do campus e sua relação com a implant	-
curso	
1.1.1 Contexto institucional e histórico da Unidade de Araxá	
1.2 Processo de Reestruturação do Projeto Pedagógico	
2 JUSTIFICATIVA DA OFERTA DO CURSO	
2.1 Contexto do campo profissional e da área de conhecimento do curso	30
2.2 Aspectos legais da profissão de Engenheiro de Automação Industrial	31
3 PRINCÍPIOS NORTEADORES DO PROJETO	
4 ORGANIZAÇÃO DIDÁTICO-PEDAGÓGICA	36
4.1 Perfil do egresso	36
4.2 Objetivos do curso	38
4.3 Metodologia de ensino	39
4.3.1 Estágio	41
4.3.2 Atividades Complementares	42
4.3.3 Trabalho de Conclusão de Curso	42
4.3.4 Implantação e integração das atividades de ensino, pesquisa e extensão	44
4.4 Estrutura curricular e seus componentes	47
4.4.1 A estrutura de apresentação dos eixos	
4.4.2 Eixos de Conteúdos e Atividades: Desdobramento em Disciplinas	
4.4.3 Definição da carga horária das disciplinas e do tempo escolar	
4.4.4 Quadros-síntese da estrutura curricular	
4.5 Matriz Curricular	
4.6 Avaliação do processo de ensino-aprendizagem	126
4.7 Políticas institucionais no âmbito do curso	
4.7.1 Políticas de ensino, pesquisa e extensão implantadas no âmbito do curso.	
4.7.2 Políticas de apoio discente	
4.8 Turno de implantação do curso	
4.9 Forma de ingresso, número de vagas e periodicidade da oferta	
5 MONITORAMENTO DO PROJETO PEDAGÓGICO DO CURSO	
5.1 Colegiado do Curso de Engenharia de Automação Industrial	
5.2 Atuação do Núcleo Docente Estruturante (NDE)	
3.2 Attação do fucico Docenie Estitutul ante (IDE)	139

5.3 Atuação do Coordenador do Curso	140
5.3.1 Plano de trabalho do Coordenador do Curso de Engenharia Industrial	,
5.4 Autoavaliação institucional e avaliação externa do curso	143
6 IMPLANTAÇÃO DO PROJETO PEDAGÓGICO DO CURSO	145
6.1 Plano de reestruturação curricular	145
6.2 Pessoal docente e técnico-administrativo	162
6.2.1 Coordenadores de Laboratórios	165
6.3 Recursos Físicos	165
6.3.1 Instalações Gerais	166
7 REFERÊNCIAS DO PROJETO	174
APÊNDICE I – LISTA DE BIBLIOGRAFIA POR DISCIPLINA	177

1 INTRODUÇÃO

As transformações socioeconômicas que ultimamente vivenciamos têm provocado profundas modificações no mercado de trabalho, o que vem exigindo, cada vez mais, pessoal qualificado e preparado para atender à diversificação de atividades, à evolução dos processos e à demanda de especialização exigida pelos setores industriais. Nesse contexto de transformações e esforços por melhoria na capacitação e na formação do trabalhador e, consequentemente, na produção, o papel do profissional da engenharia ligado à área de Automação Industrial é de fundamental importância, em se tratando da sua atuação na facilitação e busca de excelência nos processos produtivos, considerando não só os referenciais de qualidade e produtividade, mas também as questões mais gerais envolvidas no contexto onde atua.

Atento a essa realidade, o CEFET-MG/Unidade de Araxá propõe a reestruturação do projeto de curso de Engenharia de Automação Industrial, com o intuito de ocupar um espaço importante em nível local e colaborar em nível regional e nacional nessa área de formação profissional, além de renovar o seu compromisso de educar e formar para o exercício autônomo da cidadania e de qualificar seus alunos para o mercado de trabalho, levando-se em conta os referenciais abordados ao longo deste documento.

A Unidade de Araxá, Campus IV do Centro Federal de Educação Tecnológica de Minas Gerais - CEFET-MG, entrou em funcionamento em 4 de fevereiro de 1992, quando o Ministro da Educação assinou a portaria nº 215 que autorizou a implantação da Uned/Araxá, através da encampação da Escola de Minas (EMINAS) pelo CEFET-MG. Inicialmente, foram oferecidos os cursos técnico-industriais de Eletrônica, Mecânica e Mineração. Em 2001, foi implantado o curso técnico de Edificações. Os cursos superiores de Engenharia de Automação Industrial e Engenharia de Minas tiveram início, respectivamente, em 2006 e 2010.

De acordo com a Portaria n. 1694, de 5 de dezembro de 1994, do Ministério da Educação e do Desporto¹, a Engenharia de Automação Industrial é uma habilitação específica que tem sua origem nas áreas Elétrica e Mecânica do Curso de Engenharia. Esta habilitação deve obedecer aos termos da Resolução CFE n. 48/76, do antigo Conselho Federal de Educação

-

¹ BRASIL. Ministério da Educação e do Desporto. Portaria n. 1694/94. *Diário Oficial da União*, Brasília, 18 nov. 1994.

que fixa os conteúdos mínimos de um curso de Engenharia e define suas áreas.², bem como Parecer CNE/CES n. 8/2007 e Resolução n. 2, de 18 de junho de 2007.

A formação recebida habilita o Engenheiro de Automação Industrial para atividades de concepção, implementação, utilização e manutenção de unidades de produção automatizadas ou a serem automatizadas. Os interessados na qualificação deste profissional são empresas de engenharia, indústrias de produção de equipamentos e de programas para automação industrial e indústrias usuárias dessas técnicas.

A estrutura curricular do curso possui um sólido embasamento em matemática, física e informática; conhecimentos gerais de engenharia mecânica e elétrica; conhecimentos aprofundados em controle de processos contínuos, discretos e digitais, incluindo também, como não poderia deixar de ser, estudos detalhados em conteúdos da área de informática industrial e automação da manufatura; conhecimentos básicos de economia, gestão e segurança. Com base nessa estrutura curricular, o novo curso terá uma duração de 10 (dez) semestres, distribuídas em 15 semanas letivas por semestre no turno integral, totalizando 3.645 horas.

Sem desviar dessas orientações, e considerando a proposta de trabalho pedagógico no CEFET-MG/Unidade de Araxá, o curso alinha-se à perspectiva de um contexto no qual as transformações operadas incluem os vários aspectos da condição de vida do ser humano, o que significa dizer que é preciso ir além do avanço científico e tecnológico. Isso traduz que o curso valoriza não só os aspectos emergentes e imediatos das ciências exatas, mas também as implicações dessas transformações, no que diz respeito ao papel das ciências humanas e sociais na formação do Engenheiro de Automação Industrial a ser habilitado. Deste modo, o CEFET-MG/Unidade de Araxá tem como horizonte a formação de profissionais, não apenas com um sólido conteúdo científico e tecnológico na área, mas também com uma formação humana mais completa.

Com base nessas considerações, importa situar o CEFET-MG/Unidade Araxá em relação à sua atuação e ao seu papel na região onde se situa, caracterizando-o e apresentando dados que permitam visualizar o contexto em que se pretende desenvolver o curso proposto.

A organização deste Projeto Pedagógico do Curso de Engenharia de Automação Industrial se referenda na Resolução CGRAD 025/10, de 04 de agosto de 2010. Dessa forma, sua orientação parte dos princípios gerais referentes à concepção filosófica e pedagógica que presidem à elaboração de um currículo. Dentre esses princípios, destacam-se os pressupostos

-

² BRASIL. Conselho Federal de Educação. Dispõe sobre o Currículo Mínimo para as Engenharias. Resolução n. 48/76. *Diário Oficial da União*, Brasília, 27 abr. 1977, seção 3.

que orientam a proposta e a prática curricular alinhados aos princípios norteadores da instituição (Plano de Desenvolvimento Institucional - PDI e Projeto Político Pedagógico Institucional - PPI), e em consonância com sua história.

O projeto que ora se apresenta foi motivado pelas várias regulamentações do ensino de graduação do CEFET-MG, tais como:

- Resolução CEPE 24/08, de 11/04/2008: Diretrizes para os cursos de graduação do CEFET-MG:
- Resolução CEPE 21/09, de 09/07/2009: Regulamento dos Colegiados de Curso de Graduação;
 - Resolução CEPE 31/09, de 03/09/2009: Regulamento dos Departamentos;
 - Resolução CGRAD 026/09, de 09/12/2009 e homologada pelo CEPE nº 29/10;
- Resolução CGRAD 25/10, de 04/08/2010: Diretrizes para elaboração dos Projetos Pedagógicos dos Cursos de Graduação do CEFET-MG;
- Resolução CEPE 39/10, de 18/11/2010: Altera a Resolução CEPE 24/08, de 11/04/2008.

1.1 Contextualização do CEFET-MG e do campus e sua relação com a implantação do curso

O CEFET-MG é uma Instituição Federal de Ensino Superior - IFES, caracterizada como instituição multicampi, com atuação no Estado de Minas Gerais, fruto da transformação da Escola Técnica Federal de Minas Gerais em Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), pela Lei nº 6.545, de 30/06/78³, alterada pela Lei nº 8.711, de 28/09/93.

Autarquia de regime especial, vinculada ao MEC, detentora de autonomia administrativa, patrimonial, financeira, didática e disciplinar, o CEFET-MG é uma Instituição Pública de Ensino Superior no âmbito da Educação Tecnológica que abrange os níveis médio e superior de ensino, e contemplando, de forma indissociável, o ensino, a pesquisa e a extensão na área tecnológica e no âmbito da pesquisa aplicada.

_

³ Essa lei foi regulamentada pelo Decreto n. 87.310 de 21/06/82 que, por sua vez, foi revogado pelo Decreto n.5.224 de 01/10/04. Segundo este último, os CEFET's são instituições especializadas "na oferta de educação tecnológica, nos diferentes níveis e modalidades de ensino com atuação prioritária na área tecnológica". Importa acrescentar que, em 2004, o Decreto n. 5.225 de 01/10/04, o qual altera dispositivos do Decreto n. 3.860 de 09/07/2001 que dispõe sobre a organização do ensino superior, inclui explicitamente todos os CEFET's na categoria de Instituições de Ensino Superior, ao lado das Universidades.

10

O CEFET-MG possui sede em Belo Horizonte com três campi, e mantém oito

campi no interior, nas cidades de Araxá, Contagem, Curvelo, Divinópolis, Leopoldina,

Nepomuceno, Timóteo e Varginha. Os campi estão assim distribuídos:

CAMPUS I: Unidade Administrativa e de Educação Profissional de Nível Médio-

BELO HORIZONTE

CAMPUS II: Unidade de Ensino Superior - BELO HORIZONTE

CAMPUS III: Unidade de Ensino - LEOPOLDINA

CAMPUS IV: Unidade de Ensino - ARAXÁ

CAMPUS V: Unidade de Ensino - DIVINÓPOLIS

CAMPUS VI: Unidade Administrativa e de Apoio Pedagógico - BELO

HORIZONTE

CAMPUS VII: Unidade de Ensino - TIMÓTEO

CAMPUS VIII: Unidade de Ensino - VARGINHA

CAMPUS IX: Unidade de Ensino - NEPOMUCENO

CAMPUS X: Unidade de Ensino - CURVELO

CAMPUS XI: Unidade de Ensino - CONTAGEM

CET: Unidade de Ensino - ITABIRITO

Desde sua criação como Escola de Aprendizes Artífices de Minas Gerais⁴, com base

no Decreto n. 7.566 de 23/09/09, editado pelo Presidente da República Nilo Peçanha, a

Instituição, que começou a funcionar em 08 de setembro de 1910, instalada na capital do Estado,

Belo Horizonte, passou por várias denominações e funções sociais. No entanto, desde 1910, a

Escola comprometeu-se com a construção de práticas educativas e processos formativos que

vão ao encontro do seu papel e das demandas societárias que lhe foram sendo postas no decorrer

da sua história. A política praticada se pautou pelo caráter público, além da crescente busca por

integração entre o ensino profissional e acadêmico, entre cultura e produção, entre ciência,

técnica e tecnologia.

Em 1941, em função da Lei n. 378 de 13/01/37, que reestruturou o Ministério da

Educação e Saúde Pública e transformou as Escolas de Aprendizes Artífices em Liceus

Profissionais, a Escola de Aprendizes Artífices de Minas Gerais transformou-se no Liceu

Industrial de Minas Gerais. No ano seguinte, por força do Decreto n. 4.073, de 30/01/42, a

⁴ Os dados históricos referidos têm como fonte a legislação sobre a matéria e o estudo de Fonseca (1961, 1962).

Instituição transformou-se em Escola Industrial de Belo Horizonte, e, ainda no mesmo ano, pelo Decreto n. 4.127 de 25/02/42, conforme Fonseca (1962, p. 483), "subia de categoria" passando a se denominar Escola Técnica de Belo Horizonte. Posteriormente, a partir da Lei n. 3.552 de 16/02/59, que estabelece a nova organização escolar e administrativa dos estabelecimentos de ensino industrial do Ministério da Educação e Cultura, lei esta alterada pelo Decreto nº 796 de 27/08/69, a Escola é transformada em Escola Técnica Federal de Minas Gerais.

Em 1969, a escola é autorizada a organizar e ministrar cursos de curta duração em Engenharia de Operação, com base no Decreto n. 547 de 18/04/69; em 1971, Cursos de Formação de Tecnólogos e, em 1972, seus primeiros Cursos Superiores de Engenharia de Operação Elétrica e Mecânica. Assim, com funções inicialmente relacionadas à oferta educacional para o ensino primário e, posteriormente, para a formação do auxiliar técnico e do técnico de nível médio, a Instituição passou a assumir em sua trajetória a oferta de cursos de nível superior.

Em 1978, a Escola Técnica Federal de Minas Gerais foi transformada em Centro Federal de Educação Tecnológica de Minas Gerais — Instituição Federal de Ensino Superior Pública, passando a ter, como objetivos, a realização de pesquisas na área técnica industrial e a oferta de cursos técnicos industriais, de graduação e pós-graduação visando à formação de profissionais em engenharia industrial e de tecnólogos, de licenciatura plena e curta para as disciplinas especializadas do 2º grau e dos cursos de tecnólogos, além de cursos de extensão, aperfeiçoamento e especialização na área técnica industrial. Os Cursos de Engenharia de Operação Elétrica e Mecânica foram extintos e, em 1979, foram iniciados os Cursos de Engenharia Industrial Elétrica e Mecânica, com cinco anos de duração. Foram ofertados cursos de complementação para os Engenheiros egressos do CEFET-MG com a finalidade de obtenção do título de Bacharel ou Engenheiro Pleno.

Em 1982, pelo Decreto nº 87.310 de 21/06/82, o CEFET-MG passa a ter atuação em toda a área tecnológica, porém exclusivamente nessa área, a graduação é vista como ensino universitário diferenciado.

Em 1993, novos objetivos foram formulados para os Centros Federais de Educação Tecnológica, pela Lei n. 8.711, de 28/09/93, ampliando-se a autonomia desses Centros para a realização de atividades de ensino, pesquisa e extensão relativas a toda área tecnológica.

Naquele mesmo ano, foi elaborado o Plano Institucional do CEFET-MG, que contou com a participação da comunidade interna e de representantes da Federação das

Indústrias do Estado de Minas Gerais - FIEMG e do MEC. Esse documento passou a nortear a política e a maior parte das ações institucionais. À época, foi definida como Missão do CEFET-MG:

Promover a formação do cidadão – profissional qualificado e empreendedor – capaz de contribuir ativamente para as transformações do meio empresarial e da sociedade, aliando a vivência na educação tecnológica e o crescimento do ser humano, consciente e criativo, aos princípios da gestão pela qualidade no ensino, pesquisa e extensão, visando o desenvolvimento econômico e social do país. (CEFET-MG, 1993)

A partir de 1999, o CEFET-MG passou a oferecer também o Curso de Engenharia de Produção Civil, com duração de cinco anos. Em sua concepção, evidencia-se a busca por uma integração dos conhecimentos de Engenharia Civil e Gestão de Sistemas de Produção. Os Cursos de Engenharia Industrial Elétrica e Mecânica, que tiveram início em 1979 e reconhecimento em 1983, foram reavaliados em outubro e dezembro de 2004, recebendo, respectivamente, os conceitos B e A pelas Comissões de Avaliação do MEC.

No ano de 2005, a Instituição passou a oferecer o Curso de Engenharia de Controle e Automação, também com duração de cinco anos, na cidade de Leopoldina. No ano de 2006, iniciaram-se os cursos de Bacharelado em Química Tecnológica, na cidade de Belo Horizonte, e Engenharia de Automação Industrial, na cidade de Araxá. No ano de 2007, tiveram início os cursos de Engenharia da Computação e Bacharelado em Administração, ambos na cidade de Belo Horizonte. Naquele ano, ocorreram as reestruturações dos cursos de Engenharia Industrial Mecânica e Engenharia Industrial Elétrica, que passaram a ser denominados Engenharia Mecânica e Engenharia Elétrica.

Atualmente, o CEFET-MG ampliou o número de cursos superiores ofertados, principalmente de Engenharia. Em 2008, os cursos de Engenharia Mecatrônica e Engenharia de Materiais foram criados nas cidades de Divinópolis e de Belo Horizonte, respectivamente. Em 2009, foi criado o curso de Engenharia de Computação em Timóteo. Em 2010, foram criados os cursos de Engenharia Ambiental e Engenharia de Minas nas cidades de Belo Horizonte e Araxá, respectivamente. Em 2011, foi criado o curso de Letras em Belo Horizonte.⁵

A verticalização do ensino no CEFET-MG está relacionada à oferta de cursos técnicos, de graduação e pós-graduação, configurando um itinerário formativo completo, no âmbito da educação tecnológica.

O CEFET-MG oferece a seus alunos uma formação acadêmica completa, desde o técnico de nível médio até o doutoramento. Dentro da Instituição, estudantes de todos os níveis

_

⁵ Disponível no site www.cefetmg.br

integram grupos de pesquisas, compartilham conhecimento e são orientados por um corpo docente apto e atuante em todas as esferas de ensino. O reconhecimento desse empenho do CEFET-MG pode ser vislumbrado pelo tamanho do investimento dos Governos Federal e Estadual em bolsas para seus pesquisadores.⁶

A integração entre ensino, pesquisa e extensão com atuação voltada prioritariamente para a ciência aplicada, e a relação escola-setor produtivo, com base na defesa da interação entre trabalho e cultura, tecnologia e ciência, demarca nitidamente uma de nossas características diferenciadoras no âmbito do ensino superior.

Os técnicos certificados pelo CEFET-MG apresentam uma sólida formação científica e tecnológica, além de vivenciarem um ambiente que lhes propicia contato com as novas fronteiras do desenvolvimento e uma visão crítica da sociedade em que estão inseridos e na qual irão atuar. Mesclando tradição e inovação, os cursos técnicos do CEFET-MG auxiliam seus alunos na sua formação para o mundo do trabalho e as múltiplas possibilidades e demandas da sociedade contemporânea.⁷

A consolidação do CEFET-MG como uma instituição de ensino superior foi resultado de uma política institucional que consolidou várias áreas do conhecimento, de um intenso programa de capacitação do corpo docente e da constituição de novos grupos de pesquisa. Atualmente, o CEFET-MG oferta 16 cursos de graduação, com cerca de 4.000 estudantes.

Os profissionais graduados pelo CEFET-MG estão aptos a responder aos desafios do mercado de trabalho, prontos a proporem novas soluções e assumirem as responsabilidades de grandes projetos na sua área de atuação.⁸

Na década de 80, o CEFET-MG acertou com a Universidade de Tecnologia de Loughborough um Acordo de Cooperação Técnica, com apoio da CAPES e do Conselho Britânico, para viabilizar um programa de mestrado para aprofundar a capacitação do corpo docente e, dessa maneira, a instituição poder oferecer outros cursos de graduação além das Engenharias Elétrica e Mecânica. O resultado do projeto foi o Programa de Mestrado em Tecnologia que já, em 1991, possuía seu próprio corpo docente e infraestrutura laboratorial. Em 2013, já oferecia sete programas de mestrado, bem como um programa de doutorado.⁹

⁸ Disponível em:< http://cefetmg.br/textoGeral/historia.html>.

⁶ Disponível em http://cefetmg.br/textoGeral/historia.html.

⁷ Idem

⁹ Idem.

14

Os primeiros grupos de pesquisa do CEFET-MG surgiram nos anos 1990. Foram os responsáveis pela inscrição junto ao CNPq e, com isso, tiveram início os Programas de Mestrado. Em 2012, já contabilizava 76 grupos ativos de pesquisa, graças à política institucional que gerou apoio e incentivou a formação de novos conjuntos de pesquisadores.

Fruto desse trabalho é o aumento no número de mestres e doutores na Instituição.

Um aspecto importante dos grupos de pesquisa é a reunião de estudantes de todos os níveis de ensino, isto é, alunos do ensino técnico trabalham juntamente a graduandos, mestrandos e doutorandos. Como resultado, o CEFET-MG possui o maior Programa de Bolsas de Iniciação Científica Júnior do país, com 180 bolsas anuais. A consequência desse trabalho é a formação de um aluno com alto nível de conhecimento e especialização, com reconhecimento

em âmbito internacional.¹⁰

A Diretoria de Extensão e Desenvolvimento Comunitário (DEDC) do CEFET-MG foi criada em 2008 a partir da Diretoria de Relações Empresariais, tendo em vista a necessidade de atualização das estruturas organizacionais frente aos desafios acadêmicos e sociais. Além disso, a política nacional de extensão vem sendo pactuada pelas Instituições de Ensino Superior e encontra-se expressa no Plano Nacional de Extensão. Dessa forma, o CEFET-MG, através da DEDC, realiza a extensão universitária sob a forma de programas, projetos, cursos de extensão, eventos, prestação de serviços, além da elaboração e difusão de publicações, permitindo a ampliação do acesso ao saber e o desenvolvimento tecnológico e social do país. Para tanto, a DEDC é, atualmente, composta pelas seguintes coordenações e seus respectivos propósitos:

- Coordenação Geral de Atividades Culturais, com a finalidade de ampliar e qualificar as ações culturais e seus significados para o público interno e externo, de forma a

consolidar e evidenciar o papel catalisador e irradiador da instituição;

- Coordenação Geral de Programas de Estágio, com a finalidade de gerenciar ações

que visam à integração e ao acompanhamento dos alunos do CEFET-MG no ambiente

profissional, levando em consideração a legislação vigente e os projetos pedagógicos dos cursos

da instituição;

- Coordenação Geral de Programas de Extensão e Desenvolvimento Comunitário

com a finalidade de consolidar a política de extensão, por meio do fomento e do

desenvolvimento de estruturas facilitadoras de planejamento, organização e execução, capazes

de ampliar a quantidade, a qualidade e a repercussão das ações, consorciadas com o ensino e a

¹⁰ Ibidem.

Projeto Pedagógico do Curso de Engenharia de Automação Industrial — Campus Araxá — Projeto de Reestruturação do Curso, 2020. Centro Federal de Educação Tecnológica de Minas Gerais Av. Ministro Olavo Drummond, 25 - Bairro São Geraldo - Araxá — MG - CEP: 38.180.510 pesquisa, em benefício dos alunos, do desenvolvimento tecnológico e comunitário; - Coordenação Geral de Relações Étnico-Raciais, Inclusão e Diversidade, com a finalidade de planejar, organizar e executar ações correlatas a temas étnico-raciais, de gênero, de diversidades e de inclusão das pessoas com necessidades educacionais específicas;

- Coordenação Geral de Transferência de Tecnologia, com a finalidade de consolidar a política de empreendedorismo e inovação tecnológica, por meio do apoio ao desenvolvimento de empresas, produtos e tecnologias, de forma aplicada para a sociedade em geral, tendo a Nascente Incubadora de Empresas como um de seus órgãos executivos.¹¹

1.1.1 Contexto institucional e histórico da Unidade de Araxá

A criação de uma Unidade de Ensino Superior do CEFET-MG em Araxá veio ao encontro das aspirações da sociedade local, contemplando o objetivo de interiorização da Educação Profissional de qualidade. Dessa forma, a proposta de criação da Unidade de Araxá se baseou em dois aspectos fundamentais. O primeiro, na vocação da região, cuja economia se volta para a extração mineral e para a industrialização, tornando-se a principal fonte de divisas do município¹². O segundo, na necessidade de profissionalização da população jovem, evitando a emigração desta faixa etária em busca de melhores perspectivas de qualificação e de trabalho. Assim, através de Portaria de Reconhecimento n. 215, de 12 de março de 1992, foi criada a Unidade de Ensino de Araxá do CEFET-MG.

O estado de Minas Gerais fica em posição central no território nacional, com limites fronteiriços estabelecendo contato com seis estados (BA, ES, GO, MS, RJ e SP), o que é uma característica física extremamente favorável do ponto de vista do seu desenvolvimento. São 20 milhões de habitantes no estado, a segunda maior população dentre todos os estados brasileiros e uma área superior à da França. Minas ocupa o quarto lugar do País em extensão territorial.

O CEFET-MG/ Unidade de Araxá localiza-se na mesorregião do Triângulo Mineiro e Alto Paranaíba, sudoeste de Minas Gerais. A localização nessa região - próxima às divisas com Goiás, Mato Grosso do Sul e São Paulo - confere à Unidade possibilidades bastante promissoras em relação ao curso de Engenharia de Automação Industrial.

-

¹¹ Disponível em:< http://cefetmg.br/textoGeral/historia.html>.

¹² Instituto de Planejamento e Desenvolvimento Sustentável de Araxá (IPDSA). Disponível em: http://ipdsa.org.br/

As características de ocupação da região são marcadas por movimentos migratórios oriundos da região centro-oeste do Brasil e por deslocamentos rural-urbanos que propiciaram uma significativa concentração populacional, especialmente nas cidades de Uberlândia e Uberaba, vizinhas de Araxá, que são as mais populosas e principais cidades do Triângulo Mineiro na área industrial. Na área de abrangência do CEFET-MG/Unidade de Araxá, situamse, no estado de São Paulo, as cidades de Franca, Ribeirão Preto e São José do Rio Preto.

Apesar das demandas decorrentes do acelerado processo de urbanização e da tendência de metropolização, a região apresenta uma boa qualidade de infraestrutura social e urbana e detém as melhores condições de vida do Estado. Com grande parte da população concentrada na atividade agropecuária, cuja produção é bastante significativa em termos da atividade econômica na região, o Triângulo Mineiro constitui-se, também, em um dos principais polos do comércio atacadista brasileiro, e o setor de serviços da região apresenta uma dinâmica de crescimento bastante diversificada, particularmente liderada pelas atividades e pelos investimentos do setor mineiro-industrial na região.¹³

Esse desenvolvimento acelerado exige das instituições de ensino tecnológico maior agilidade na criação e na adaptação de cursos que atendam às necessidades de qualificação do trabalhador e ao mercado de trabalho, o que implica a busca de alternativas técnico-pedagógicas que aliem competências gerais e capacidades específicas com envolvimento e parceria do setor produtivo nesse processo. Além de amplos conhecimentos científicos que proporcionam capacidades exigidas pela sociedade contemporânea, os trabalhadores passam a necessitar de competências específicas que os habilitem a atuar nos modernos processos produtivos.

O processo de implantação de grandes unidades industriais extrativas minerais na microrregião polarizada por Araxá constituiu um marco de ruptura com os padrões anteriores de organização econômica do município. Após a década de 1970, essas atividades estimularam a geração de emprego e de renda do município, alavancando os outros setores da economia na região e articulando-se a eles. Essa atividade extrativa mineral é representada pela Companhia Brasileira de Metalurgia e Mineração – CBMM e a MOSAIC Fertilizantes, essa última, além da unidade em Araxá, conta com uma unidade no município vizinho de Tapira. Além das mineradoras, a Bem Brasil Alimentos também é considerada uma empresa de grande porte no município.

¹³ Disponível em: <<u>www.prefeituradearaxa.gov.br</u>>

Segundo a Secretaria de Desenvolvimento Econômico e Parcerias da Prefeitura Municipal de Araxá (SEDEP), por meio da publicação "Tendências recentes da atividade econômica em Araxá: empresas, trabalho formal", no ano de 2015, no município, estavam ativas quase 10 mil empresas de diferentes portes e atividades, correspondendo a 0,54% do total de empresas ativas no estado de Minas Gerais, colocando Araxá na 25ª posição entre as cidades mineiras com maior número de empresas.¹⁴

O fator mais importante da publicação está voltado para a condição do crescimento do número de empresas no município, conforme pode ser visto na Figura 1**Erro!** Fonte de referência não encontrada., a seguir.

Número de Empresas Ativas

Figura 1 - Gráfico do número de empresas ativas no município de Araxá

Fonte: Adaptado de http://araxa.mg.gov.br/arquivo/link/1_empresas_trabalho.pdf, acesso em: 11 de jul. 2016.

Essas indústrias de grande porte constituíram-se em contratantes de significativo contingente de força de trabalho e, nessa área, o primeiro problema evidenciado foi a carência de mão de obra qualificada. Para superar esse problema, o CEFET-MG / Unidade de Araxá, em parceria com a prefeitura e empresas da região, mantém-se constantemente em busca de soluções para as necessidades de qualificação do trabalhador, criando e aperfeiçoando os atuais quatro cursos de Educação Profissional de Nível Médio e os dois cursos superiores de Engenharia de Automação Industrial e Engenharia de Minas.

O Programa de Expansão e Melhoria do Ensino Técnico – PROEC, criado em 1986 durante o governo do Presidente José Sarney, abriu caminho para a interiorização do ensino técnico no país. Nessa época, os CEFETs situavam-se somente nas capitais.

¹⁴ Disponível em: http://araxa.mg.gov.br/arquivo/link/1 empresas trabalho.pdf> acesso em: 11 de jul. 2016.

18

Assim, a criação de uma unidade de ensino do CEFET-MG em Araxá também viria a se inserir dentro do projeto do PROTEC.

Durante dois anos após sua criação, em 1992, a unidade funcionou com apoio da Prefeitura Municipal de Araxá, através de convênio firmado, a qual se responsabilizou pela manutenção financeira do quadro de pessoal, material de consumo e outras despesas. Ao CEFET-MG coube a responsabilidade pela autonomia didático—científica e administrativa.

Com a realização de concursos públicos, a partir de 1994, para provimento das carreiras docente e técnico-administrativa, o governo federal assumiu a responsabilidade pela total manutenção e funcionamento da Unidade de Araxá.

Atualmente, a Unidade de Araxá oferece quatro cursos técnicos industriais: Eletrônica Industrial, Mecânica Industrial, Mineração e Edificações. Ao implantar os Cursos de Engenharia de Automação Industrial em 2005, e Engenharia de Minas em 2010, a Unidade segue sua vocação de oferecer ensino profissional público, gratuito e de qualidade, agregando a esse universo sua atuação em nível de graduação e firmando sua posição de centro de referência na região.¹⁵

1.2 Processo de Reestruturação do Projeto Pedagógico

Este documento tem como finalidade apresentar as revisões do Projeto Político-Pedagógico do Curso de Graduação em Engenharia de Automação Industrial, com previsão de início para 2020, no CEFET-MG/ Unidade Araxá. O curso tem como objetivo central a formação de profissionais com uma sólida e qualificada fundamentação, tanto do ponto de vista conceitual quanto prático, envolvendo uma base de conhecimentos que os preparam para atuar no processo produtivo e no desenvolvimento técnico e científico do país, considerando-se os aspectos políticos, sociais, culturais, econômicos, ambientais, humanos e éticos, relacionados direta ou indiretamente à sua atuação.

O projeto do curso elaborado em 2005 surgiu das expectativas dos professores desta Unidade em oferecer uma alternativa de qualificação profissional que pudesse atender à carência em relação a um curso superior gratuito na região de Araxá. A opção pelo Curso de Engenharia de Automação Industrial baseou-se não só no crescente nível de automatização dos processos industriais na região e na vocação desta Unidade em oferecer cursos profissionalizantes que permitam uma formação continuada e de qualidade, conforme as

_

¹⁵ Disponível em historico/>

orientações e os referenciais expressos ao longo deste documento, como também na possibilidade de melhor aproveitamento das instalações físicas da unidade e do seu quadro de professores. Cabe lembrar, também, que a decisão de oferecer esse curso levou em conta a busca por qualificação nas várias áreas de conhecimento relacionadas ao trabalho pedagógico na Unidade de Araxá, com o objetivo de oferecer um ensino de qualidade aos alunos.

O Projeto Pedagógico do Curso de Engenharia de Automação Industrial CEFET-MG/ Unidade Araxá vigente data de 2005, e tem duração de 11 semestres de 18 semanas, equivalente a cinco anos e meio.

Para elaboração da reestruturação do projeto pedagógico do Curso foi constituída uma comissão multidisciplinar, com a participação de docentes, coordenadores de cursos e técnicos administrativos do CEFET-MG/ Unidade Araxá, a fim de realizar um estudo acerca do contexto socioeconômico e demais características da região, da viabilidade em continuar a oferecer o curso nesta Unidade, e para propor sua modernização.

Nas reuniões para apresentação e discussão de propostas alternativas, cujas atas estão no Anexo A, foi assumida a importância da continuidade do Curso de Engenharia de Automação Industrial, como sendo o que mais se aproxima das expectativas e características da região, tendo em vista a infraestrutura já existente na unidade e as projeções de melhorias e incremento, tanto no que diz respeito aos recursos humanos quanto às instalações, equipamentos e materiais, principalmente no que se refere à parte específica de Controle de Processos Contínuos e Discretos.

A justificativa da reestruturação do projeto pedagógico multidisciplinar do Curso de Engenharia de Automação Industrial levou em conta as deliberações da Resolução CEPE 24/08, que define como carga horária mínima do curso 3600h totais, num período de 15 semanas por semestre letivo. Para adequação do curso noturno a esta Resolução do CEPE, passando para 15 semanas semstrais e incluindo na matriz disciplinas equalizadas, com suas respectivas cargas horárias e ementas, o tempo total de duração do curso seria de, aproximadamente, 6,5 anos, conforme especificado a seguir:

- 3.650 h., sendo 3.162,5 h. na instituição, 187,5 h. de atividades complementares e 300 h. de estágio;
- 20 h-a por semana ou 16,67 h.;
- 16,67 h. por semana em 15 semanas corresponderia a 250 h. por semestre;
- 3.162,5 h. divididos por 250 horas semestrais, resultaria em 12,65 semestres.

20

Tendo em vista o atendimento à referida Resolução, foram levantadas as seguintes

alternativas:

i) Manutenção do curso noturno, em 13 semestres, atendendo aos princípios de sua

criação no PPC de 2005, com atendimento prioritário regional, em conformidade

com outras escolas e universidades, com participação e atuação das prefeituras

próximas;

ii) Manutenção do curso noturno, em 12 semestres, sendo que nos seis últimos

semestres haveria aulas aos sábados pela manhã e/ou tarde, atendendo, da

mesma forma que na alternativa i), prioritariamente a região, com o agravante

de que aos sábados os alunos não contam o apoio das prefeituras com transporte,

o que inviabiliza a conclusão do curso;

iii) Alteração do curso para integral, reduzindo seu tempo para 10 semestres letivos, sem

necessidade de aulas aos sábados, o que resolveria o problema de transporte dos alunos

de outras cidades. Como consequência dessa alteração, torna-se possível a criação de

mais cursos noturnos de pós-graduação e/ou de técnicos profissionalizantes, uma vez

que haverá disponibilidade de salas de aula no noturno após a conclusão das turmas que

ingressaram na vigência do projeto pedagógico de 2005, aproximadamente cinco anos

e meio.

Após realização de vários estudos pela comissão de reestruturação, levando-se em

conta as vantagens e desvantagens de cada uma das alternativas, em reunião da coordenação de

curso, os professores efetivos que atuam direta e indiretamente no Curso votaram e aprovaram

a proposta de alteração de turno, alternativa iii), com base nas normas e diretrizes atuais, cujas

consequências serão expostas na nova matriz curricular, que passa a ter duração correspondente

a 10 semestres, ou 5 anos. Essa aprovação corresponde a 75% dos votos válidos. As atas das

reuniões da Coordenação, do NDE e do Colegiado de Curso encontram-se no Anexo A.

Devem-se considerar ainda os seguintes aspectos:

1°- Um curso noturno muito extenso, com duração de aproximadamente 6,5 anos,

poderia ser um fator desmotivador para ingressantes. Considerando-se este contexto, ofertar o

curso em um prazo de 5 anos, como acontece na maioria das Universidades Federais,

consolidaria o curso em nível nacional, e não somente regional.

- 2º- Em relação a ingresso e evasão no curso, tem-se os seguintes registros:
- iv) Total de alunos ingressantes de 2006 até 2017: 485 alunos;
- v) Total de alunos desistentes de 2006 até 2017: 218 alunos ou 45%, seja por evasão ou transferências internas e externas;
- vi) Atualmente 186 alunos estão matriculados e/ou com matrícula trancada.

A Tabela 1 mostra a quantidade e a porcentagem dos alunos ingressantes, evadidos, formados regularmente e formados após 11 semestres no curso da Engenharia de Automação Industrial, ao longo de 12 anos de implantação.

Tabela 1 - Alunos ingressantes, formados e evadidos por ano

Informações anuais	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	Total
Ingressantes	30	33	35	36	37	39	44	48	49	44	46	44	485
Formados	7	6	7	2	3	7	1	0	0	0	0	0	33
Regularmente	,	O	/	2	3	/	ı	U	U	U	יט	U	33
Porcentagem	23%	18%	20%	6%	8%	18%	2%	0%	0%	0%	0%	0%	7%
Formados após 11 períodos	8	11	14	11	3	1	0	0	0	0	0	0	48
Porcentagem	27%	33%	40%	31%	8%	3%	0%	0%	0%	0%	0%	0%	10%
Desistentes: Evadidos,	15	15	14	20	24	23	30	30	20	14	13	0	218
Transferências.	15	15	14	20	24	23	30	30	20	14	13	U	210
Porcentagem	50%	45%	40%	56%	65%	59%	68%	63%	41%	32%	28%	0%	45%
Matriculados e com matrícula													
trancada	0	1	0	3	7	8	13	18	29	30	33	44	186
												- -	
Porcentagem	0%	3%	0%	8%	19%	21%	30%	38%	59%	68%	72%	100%	38%

Fonte: Coordenação Registro e Controle Acadêmico

Por meio dos dados apresentados na Tabela 1, é possível averiguar que quase metade dos ingressantes do curso estão evadidos ou foram transferidos ao longo de 12 anos.

Considerando que os alunos que poderiam se formar até 2017 correspondem aos alunos que ingressaram de 2006 a 2011, foi elaborada a Tabela 2, com a média de formados em período regular em relação aos ingressantes, o número de formados após 11 semestres, além dos desistentes.

Tabela 2 - Cenário das turmas ingressantes nos seis primeiros anos do curso

Informações anuais	2006	2007	2008	2009	2010	2011	Total
Ingressantes	30	33	35	36	37	39	210
Formados regularmente	7	6	7	2	3	7	32
Porcentagem	23%	18%	20%	6%	8%	18%	15%
Formados após 11 períodos	8	11	14	11	3	1	48
Porcentagem	27%	33%	40%	31%	8%	3%	23%
Desistentes: Evadidos, Transferências.	15	15	14	20	24	23	111
Porcentagem	50%	45%	40%	56%	65%	59%	53%
Matriculados/Trancados e colação de grau	0	1	0	3	7	8	19
Porcentagem	0%	3%	0%	8%	19%	21%	9%

Fonte: Coordenação Registro e Controle Acadêmico

A Tabela 2 especifica, em relação aos formados regularmente no Curso (dentro do período de 11 semestres), que eles correspondem a 5,33 alunos em média ou 15% do total de ingressantes, enquanto que os formados fora do período regular correspondem a 8,0, ou 23% dos alunos que, juntos, somam 38%.

O número de desistentes em relação aos ingressantes nos seis primeiros anos de implantação do Curso equivale a 53%, ou 111 alunos, além de 19 alunos remanescentes que permanecem no curso matriculados. Se se somarem os desistentes e os ainda matriculados, temse um total de 130 alunos ou 62% dos ingressantes, que representam aqueles que evadiram, transferiram ou que ainda se encontram matriculados ou com matrícula trancada.

- 3°- O processo seletivo ocorre por meio da oferta de vagas na plataforma do sistema de Seleção Unificada do MEC. Essa forma de ingresso, em se tratando de curso em período integral, traz a expectativa de aumento da concorrência de estudantes de diversas regiões nos processos seletivos.
- 4º Na condição atual de curso noturno, os professores encontram dificuldades em relação à adesão de alunos para participarem de projetos de pesquisa e monitoria, uma vez que os discentes dispõem de pouco tempo para dedicação. Mesmo que ao ingressarem no curso não estejam no mercado de trabalho, alguns alunos, por ficarem ociosos durante o dia, acabam trabalhando, e, como consequência, faltam discentes para integração com o curso. Para efeito de exemplificação, foi elaborada a Tabela 3 com número de alunos que participaram de monitorias no curso de Engenharia de Automação Industrial nos anos de 2011 a 2017.

Tabela 3 - Monitores selecionados por ano

Seleção de Monitorias - Editais	Número de Alunos da Engenharia de
	Automação Industrial
Edital 2017	3
Edital 2016	1
Edital 2015	0
Edital 2014	5
Edital 2013	2
Edital 2012	2
Edital 2011	1
Média total de alunos	2

Conforme os editais de monitoria, até 2011, eram ofertadas 10 vagas para o curso de Engenharia de Automação Industrial e 10 para Engenharia de Minas, totalizando 20 vagas por edital. A partir de 2011 até 2016, os editais passaram a ser unificados para as duas engenharias, mas, como não houve preenchimento das vagas do curso de EAI, estas foram cedidas para o curso de Engenharia de Minas.

5°- O curso em período integral, diferentemente do curso noturno, deverá possibilitar uma maior integração entre ensino, pesquisa e extensão, com mais participação de discentes e docentes em projetos junto às agências de fomento como FAPEMIG, CAPES, CNPq, além de prestação de serviços com convênios na instituição, contribuindo para o aperfeiçoamento dos docentes nas suas especificidades, e culminando com o aumento da produção científica e tecnológica. Poderá igualmente propiciar o aumento da participação dos alunos nos programas institucionais como PET (Programa de Educação Tutorial) e programas de mobilidade acadêmica, dentre outros, conforme descrito a seguir.

O Curso de Engenharia de Automação Industrial conta com o Núcleo de Pesquisa em Energias Alternativas e Eletrônica Industrial, desde 2009, que tem a finalidade de estudar, pesquisar e propor soluções em energias alternativas emergentes através de equipamentos da eletrônica de potência para aplicação industrial.

Entre outros trabalhos, o Núcleo dispõe de laboratório de ensaios de placas photovoltaicas para certificação de sistemas de energia em microrredes particulares ligadas aos

24

órgãos governamentais de energia elétrica. Realiza, ainda, o estudo da estabilidade de um

sistema composto por inversores PWM senoidais conectados em paralelo em rede isolada, sem

a presença de uma barra infinita.

O Programa de Educação Tutorial - PET no Curso de Engenharia de Automação

Industrial é representado por um professor tutor e professores cotutores, que atuam diretamente

no curso, em conjunto com os alunos, elaborando e orientando diversas atividades dentro da

instituição.

O Curso conta ainda com um Núcleo de Desenvolvimento de Robótica – NDR, que

tem como principal objetivo aprimorar a experiência dos estudantes de Engenharia e do ensino

técnico do CEFET-MG, por meio de atividades que permitem a integração dos conhecimentos

teóricos com experiências de prática profissional. A atividade mais relevante desenvolvida

pelos membros da equipe é o projeto e construção de protótipos, autônomos ou guiados,

destinados a competições relacionadas à robótica.

O NDR organiza as equipes através de metodologia atualizada, incentivando a

participação de todos os membros em trabalhos na área da mecânica, eletrônica, programação

e gestão em função de planejamento semestral ou específico para determinado evento. O

ingresso no NDR permite o aprendizado técnico em diversas áreas do conhecimento, o

incentivo à liderança e à vivência profissional.

O Núcleo participa e intenta participar de diversos eventos relacionados à

robótica, predominantemente, competições de seguidores de trilhas, batalhas e futebol de robôs,

dentre outras, realizadas no Brasil e no exterior.

As atividades fazem parte de um projeto desenvolvido por alunos no âmbito do

NDR da Coordenação de Engenharia de Automação Industrial do CEFET-MG, concedendo

horas complementares para aqueles que dele participam.

Dentre seus objetivos específicos, podem-se citar:

Montar novas equipes capazes de conceber e construir protótipos de veículos

autônomos, utilizando novas e diversas tecnologias de controle em sistemas em

malha fechada, disseminando o conhecimento aos demais alunos para utilizar,

desenvolver, testar e também participar de competições universitárias nas

modalidades seguidores de trilha, robôs autônomos, futebol de robôs,

vants/drones, etc;

- Incentivar alunos da unidade Araxá a se envolverem com conteúdos pertinentes
 a sua formação, desde os primeiros períodos, a trabalharem em equipe e a
 resolverem problemas relativos aos seus projetos;
- Ampliar o interesse dos estudantes em pesquisas e projetos de extensão relacionados às áreas da eletrônica, mecânica e programação, a partir do desenvolvimento de equipamentos e novas tecnologias que atendam às necessidades em automação industrial e controle;
- Promover a participação de discentes em atividades de extensão de forma a ampliar a integração entre o CEFET-MG e a sociedade;
- Incentivar o intercâmbio de conhecimentos dos alunos da unidade Araxá com outras escolas e universidades;
- Disponibilizar para a sociedade o conhecimento tecnológico desenvolvido no CEFET-MG;
- Fortalecer a relação entre ensino, pesquisa e extensão;
- Contribuir para a formação acadêmico-profissional do discente por meio do incentivo à criatividade e pró-atividade de seus membros.

6º – Por fim, a consolidação da ampliação de pesquisas do curso de Engenharia de Automação Industrial poderá contribuir para a oferta de pós-graduação na unidade (dificuldade evidenciada atualmente).

Definido o escopo de reestruturação do curso, procedeu-se à elaboração da revisão da matriz curricular, com base na legislação geral para os cursos de Engenharia ¹⁶, na legislação específica sobre o Curso de Graduação em Engenharia de Automação Industrial ¹⁷, no levantamento e estudo das matrizes de vários cursos correlatos na área existentes no país, além da equalização aos Cursos de Engenharia oferecidos pelo CEFET-MG¹⁸, para fins de adequação das disciplinas básicas, de caráter geral, aos diversos cursos oferecidos, e de algumas disciplinas novas e específicas.

Assim, este Projeto de Reestruturação segue a estrutura curricular por Eixos de Conteúdos, redefinida e adotada pelos cursos de Engenharia do CEFET-MG, cujas normas que

-

¹⁶ Cf. Brasil (1977 e 2002).

¹⁷ Cf. Brasil (1994).

¹⁸ Equalização das disciplinas das Engenharias de acordo com a resolução CEPE 24/08 e CEPE 02/16.

deverão reger o curso seguirão os mesmos padrões e princípios definidos pelos Conselhos de Graduação (CGRAD) e de Ensino, Pesquisa e Extensão (CEPE) do CEFET-MG. Nessa direção, a reestruturação curricular do curso está de acordo com o Parecer CNE/CES n. 329/2004, aprovado em 11 de novembro de 2004, que reestrutura a legislação vigente e estabelece a carga horária mínima de 3.600 horas para os cursos de Engenharia, já incluída a carga horária do estágio supervisionado¹⁹, além das Resoluções CEPE-24/08, de 11 de abril de 2008, e CEPE-02/16, de 6 de maio de 2016.

Considerando ainda as características da região, o curso será ofertado em 10 semestres, com aula no período vespertino, de 14h às 17h30min, e noturno, de 19h às 22h30min, na fase de transição (ajuste), até que os alunos que ingressaram no curso noturno concluam todas disciplinas. Após a finalização do período de ajuste, o curso poderá ser ofertado no período integral (manhã, tarde ou noite).

Esta proposta considerou a estrutura existente na Unidade de Araxá e o número de docentes disponíveis, levando em conta também a repetência, que é comum nos cursos de Engenharia. Considerando tais aspectos, aliados à adequação do curso à Resolução CEPE 24/08, que altera o calendário dos cursos de Engenharia de 18 para 15 semanas por semestre e inclui na matriz disciplinas equalizadas, se se mantiver o curso no noturno, não haverá salas nem professores suficientes para turmas com número elevado de alunos (ingressantes e repetentes), além de acarretar o aumento de subturmas de laboratório, tendo em vista a previsão de aulas práticas desde o início do curso, as quais ocorreriam concomitantemente aos demais cursos existentes na Unidade de Araxá.

Por sua vez, considerando a migração do curso do turno noturno para integral, a disponibilidade de salas de aula no turno da tarde foi averiguada (cf. Tabela 4), tendo em vista que em sua nova configuração, o curso será ministrado, inicialmente, à tarde e à noite. Nesta análise, identificou-se que: dentre as 13 salas de aula disponíveis, tem-se 34 turnos livres na semana, o que demonstra que a unidade comporta o curso de Engenharia de Automação Industrial no período integral. Deve-se salientar que esta análise é de salas de aula e que há, igualmente, disponibilidade de laboratórios no período integral, diferentemente do noturno, que é o período de maior ocupação dos mesmos devido aos cursos técnicos subsequentes e de concomitância.

_

¹⁹ Cf. BRASIL (2004), especialmente em relação aos encaminhamentos de proposta de resolução específica no âmbito do Ministério da Educação.

Tabela 4 - Disponibilidade atual das salas de aula no período vespertino (em horas-aula)

SALA	SEGUNDA	TERÇA	QUARTA	QUINTA	SEXTA
204	2	2	0	2	4
301	4	2	4	0	4
302	0	4	2	4	4
402	4	0	0	4	4
403	2	0	4	4	4
404	4	4	4	4	4
503	4	0	2	1	4
504	2	0	2	2	4
601	2	4	4	2	4
602	0	0	0	0	4
603	0	0	1	0	4
701	0	4	4	2	4
702	4	4	4	4	4
Disponibilidade	28	24	31	29	52
Disponibilidade semanal			164		

Fonte: horários de aulas do 1º semestre de 2018

que:

Em relação à disponibilidade de laboratórios no período vespertino, verificou-se

- Laboratórios de informática possuem disponibilidade para 43 h-a, e a demanda será de 20 h-a.
- Laboratórios de Eletrônica possuem disponibilidade para 21 h-a, e a demanda será de 10 h-a.
- Laboratórios de Automação (sensores, acionamentos, automação e hidráulica) possuem disponibilidade para 66 h-a, e a demanda será de 32 h-a.
- Salas de Desenho possuem disponibilidade para 10 h-a, e a demanda será de 4 h-a.

Os alunos do Curso são informados, antes de cada período letivo, sobre os programas das disciplinas e demais componentes curriculares, sua duração, requisitos, qualificação dos professores, recursos disponíveis e critérios de avaliação, em página específica do curso na internet, cujo link encontra-se no sítio eletrônico oficial da instituição CEFET-MG: http://www.eng-automacao.araxa.cefetmg.br, conforme a Lei 13.168/2015.

Além de divulgação no site institucional, o quadro de horários, as disciplinas com seus respectivos professores, duração das aulas, informações sobre editais, programas de estágio, formas de avaliação, também ficam disponívies em quadro de avisos ao lado da coordenação do Curso.

2 JUSTIFICATIVA DA OFERTA DO CURSO

O desenvolvimento tecnológico aliado à alta competitividade do mercado impulsiona o setor industrial para a utilização intensiva de tecnologias ligadas à eletrônica e à informática. Observa-se uma intensa e crescente utilização dos processos de controle e automação industrial nas diversas fases de produção industrial, desde os projetos (Desenho Assistido por Computador – CAD) até a manufatura (Manufatura Auxiliada por Computador – CAM). Dessa forma, a Automação Industrial é um processo relativamente irreversível, tornando-se ferramenta imprescindível na busca da qualidade, produtividade e competitividade.

As maiores usuárias de equipamentos de automação industrial são as divisões de eletrônica e comunicação (61% das plantas e 88% do pessoal ocupado) e de instrumentos médicos e de precisão (58% e 74%, respectivamente), ambas pertencentes à categoria de bens de capital e de consumo duráveis. Esta categoria, por sua vez, apresenta nível de automação (41% das unidades e 76% do pessoal ocupado) bem acima da média do setor (32% e 76%, respectivamente). Nas demais categorias, a taxa de difusão em relação aos setores que são usuários dos equipamentos de automação se aproxima da média geral, sendo 33% para a categoria de bens intermediários e 30% para a de bens de consumo não duráveis, e as divisões que ocupam maior destaque em ambas as categorias são combustível (54% das unidades e 74% do pessoal ocupado), borracha e plástico (50% e 56%, respectivamente) e extração de minerais e metálicos (48% e 86%, respectivamente)²⁰.

Metade dos trabalhadores ligados à produção são semiqualificados, seguidos pelos qualificados (30%), braçais (9%), técnicos de nível médio (8%) e técnicos de nível superior (3%). A categoria de bens de consumo não duráveis apresenta maior participação de trabalhadores semiqualificados e menor participação de técnicos de nível médio e superior. Por outro lado, a categoria de uso de bens de capital e de consumo duráveis apresenta os maiores percentuais de técnicos de nível médio e de nível superior e a menor participação de trabalhadores braçais, indicando que a qualificação média das ocupações dessa categoria de uso é superior à das outras²¹.

_

²⁰ CF. SEADE. PAER (2000)

²¹ Idem

Considerando esses dados do ponto de vista do emprego, o estado de Minas Gerais participa com 17,2% dos empregos existentes na região sudeste, enquanto a mesorregião do Triângulo Mineiro e Alto Paranaíba, onde está situado o CEFET-MG/Unidade Araxá, é responsável por 10% das pessoas empregadas em todo o estado, perdendo apenas para a mesorregião de Belo Horizonte e região Sul/Sudoeste²².

Especificamente em Araxá, o setor industrial domina a economia e se sustenta nas riquezas minerais, sendo responsável pelo emprego de 37,88% da população economicamente ativa, seguido pela agropecuária, com 11,29% dos empregos, representada, especialmente, pelo café e pela pecuária leiteira. O comércio emprega 9,32% da população economicamente ativa; transporte, comunicação e armazenamento, empregam 4,2%, enquanto outros serviços ficam com 37,31% dos empregos²³.

O projeto de Curso da Engenharia de Automação Industrial do CEFET-MG/Unidade Araxá leva em conta os indicativos do contexto para o qual os setores da economia - com o setor industrial à frente - sinalizam investimentos e demandas relacionadas às áreas nas quais atuaria o futuro Engenheiro de Automação Industrial. Sendo assim, as oportunidades decorrentes, em parte, das perspectivas dos investimentos futuros em modernização e ampliação da capacidade de produção da indústria mineira, aumentam a demanda por ocupações que são escassas no mercado de trabalho regional e que exigem formação profissional de nível superior. Além disso, as atuais carências de qualificação, apontadas pelas empresas da região em sua força de trabalho, abrem oportunidades para a expansão na oferta de cursos de nível superior no CEFET-MG/ Unidade Araxá, o que consolida sua posição de importância nesse cenário.

Vale ressaltar que o CEFET-MG/Unidade Araxá dispõe de condições favoráveis para manter e melhorar o Curso de Engenharia de Automação Industrial, no que diz respeito ao seu corpo docente e às atuais instalações disponíveis na unidade, feitas as devidas projeções de implementação e de consolidação do curso, conforme pode ser verificado no item 4.4, que trata da estruturação curricular, e no item 6.3, que trata da infraestrutura existente.

Importa considerar que o profissional formado receberá a habilitação de **Engenheiro de Controle e Automação**, conforme Resolução n. 427, de março de 1999, emitida pelo Conselho Federal de Engenharia, Arquitetura e Agronomia (CONFEA), apesar de

²² Ibidem

²³ Os dados são estimados pela Secretaria Municipal de Desenvolvimento e Turismo de Araxá e podem ser enriquecidos com outros contidos em IPDSA (2016).

o curso proposto aqui ser nomeado como **Engenharia de Automação Industrial**, devido às peculiaridades e especificidades características do setor industrial da mesorregião do Triângulo Mineiro e Alto Paranaíba, onde está situada a nossa unidade de ensino, e dos estados vizinhos, bem como particularidades próprias dos laboratórios e do grupo de docentes que integram esta unidade de ensino. Assim, conforme preconizam a Lei n. 9394/96, a Lei n. 10172/01, o Parecer CNE/CES n. 776/97, o Parecer CNE/CES n. 583/2001 e o Parecer n. 1362/2001²⁴, o projeto de reestruturação do curso de **Engenharia de Automação Industrial** do CEFET-MG/ Unidade Araxá prevê, na sua parte específica, disciplinas que contemplam mais especificamente a área de Controle de Processos Discretos e Contínuos, caracterizando e identificando, desta forma, a ênfase dada ao referido curso.

2.1 Contexto do campo profissional e da área de conhecimento do curso

Em termos da atuação do futuro profissional, o Curso de Engenharia de Automação Industrial possibilita ao engenheiro exercer atividades de: i) implementação e manutenção de sistemas eletroeletrônicos e circuitos eletrônicos na área de automação e processos industriais; ii) execução de procedimentos de manutenção e de supervisão; iii) utilização de estruturas microcontroladas, microprocessadas e controladores lógicos; iv) desenvolvimento e análise de circuitos, contendo lógicas hidráulicas e pneumáticas; v) utilização de programas de gerenciamento de processos industriais; vi) articulação e adaptação às demandas de aperfeiçoamento e desenvolvimento da sua área.

A atuação desse engenheiro ocorre, especificamente, em indústrias que produzam e/ou utilizem materiais, dispositivos, instrumentos, equipamentos, programas e sistemas dedicados à automação de processos industriais; em empresas públicas, privadas e prestadoras de serviços que atuem nessas áreas ou que necessitem do profissional com a sua formação; em empresas de consultoria; em assessoria e assistência técnica; e em áreas de administração de recursos humanos, por meio de levantamento das necessidades de aprimoramento de pessoal, planejamento de empreendimento na política de qualidade e gerenciamento do processo produtivo.

²⁴ Cf. BRASIL (1996, 1997, 2001a, 2001b e 2001c), especialmente no que recomenda o texto da Resolução CNE/CES n.11/02, fundamentada no Parecer CES 1362/01, "peça indispensável do conjunto das presentes Diretrizes Curriculares Nacionais".

2.2 Aspectos legais da profissão de Engenheiro de Automação Industrial

Atribuições profissionais pelo CONFEA/CREA

De acordo com o CREA-MG, na Câmara Especializada de Engenharia Elétrica da Gerência Técnica e de Atribuições Profissionais, tem-se as seguintes definições:

1ª- **Título Profissional**: é o nome da profissão que será referendada em sua carteira profissional. O Anexo da Resolução CONFEA nº 473/2002 estabelece os títulos disponíveis no Sistema CONFEA/CREA's. Normalmente o Profissional recebe o título do Diploma/ Certificado.

2ª- **Atribuição Profissional:** o que o profissional poderá fazer. A Resolução nº 218/73 estabelece as áreas de atuação do profissional. Na modalidade elétrica, os artigos 8º e 9º, transcritos a seguir, são os que abordam a questão.

"Art. 8º - Compete ao Engenheiro Eletricista na Modalidade Eletrotécnica:

I – O desempenho das atividades 01 a 18 do artigo 1º desta Resolução, referentes à geração, transmissão, distribuição e utilização da energia elétrica; equipamentos, materiais e máquinas elétricas; sistemas de medição e controle elétricos; seus serviços afins e correlatos.

Art. 9° - Compete ao Engenheiro Eletrônico ou ao Engenheiro Eletricista na Modalidade Eletrônica ou ao Engenheiro de Comunicação:

I - O desempenho das atividades 01 a 18 do artigo 1º desta Resolução, referentes a materiais elétricos e eletrônicos; equipamentos eletrônicos em geral; sistemas de comunicação e telecomunicações; sistemas de medição e controle elétrico e eletrônico; seus serviços afins e correlatos."

O artigo 1°, praticamente, é comum para todas as modalidades, então o que define onde o profissional poderá trabalhar são os demais artigos, disponíveis para cada área.

Os Engenheiros Eletricistas plenos recebem, inicialmente (dependendo da análise individual do currículo cursado pelo aluno), as atribuições dos artigos 8º e 9º da Resolução CONFEA n.º 218/73, desde que tenham cursado disciplinas técnicas nas áreas de Eletrônica e Eletrotécnica, cuja carga horária somada em cada área, seja igual ou superior a 360 horas. Este é o critério estabelecido para todos os CREA's, pela Coordenadoria Nacional de Câmaras Especializadas de Engenharia Elétrica.

Os Engenheiros de Automação Industrial recebem a denominação de *Engenheiros de Controle e Automação* perante o Sistema CONFEA/CREA'S, e integram o grupo de

Engenheiros Eletricistas, até que seja criada uma área específica para esta modalidade, conforme prevê o parágrafo único do artigo 3º da Resolução CONFEA nº 427/99.

Os diplomados nesta modalidade recebem, quando registrados no CREA, o Título de Engenheiro de Controle e Automação, com atribuições específicas, previstas no artigo 1º da referida Resolução, transcrita a seguir:

Art. 1º - Compete ao Engenheiro de Controle e Automação, o desempenho das atividades 1 a 18 do art. 1º da Resolução nº 218, de 29 de junho de 1973 do CONFEA, no que se refere ao controle e automação de equipamentos, processos, unidades e sistemas de produção, seus serviços afins e correlatos.

Portanto, sua atuação poderá se dar dentro do campo de trabalho nas áreas atendidas, de acordo com os artigos 8° e 9° da Resolução n° 218/73, e/ou aos seus serviços afins e correlatos, isto é, não tem restrição para o desenvolvimento na Engenharia Elétrica/ Eletrônica. ²⁵

3 PRINCÍPIOS NORTEADORES DO PROJETO

Os princípios norteadores passam por quatro dimensões básicas que envolvem: a concepção de conhecimento e sua forma de aplicação e validação (dimensão epistemológica); a visão sobre o ser humano que se pretende formar (dimensão antropológica); os valores que são construídos e reconstruídos no processo educacional (dimensão axiológica); e os fins aos quais o processo educacional se propõe (dimensão teleológica).

Na dimensão epistemológica, tem-se como ponto de partida a análise da realidade contemporânea, diversificada e em constante transformação, aspectos estes que passam a balizar a produção do conhecimento. Essa produção encontra-se, dessa forma, revestida de um caráter histórico e dinâmico, o que torna refutável a ideia de um conhecimento que tenha a pretensão de se referir a verdades absolutas e definitivas. Aprender é, nesse sentido, um processo intrinsecamente ligado à vida. Aprender é um processo ambíguo, que deve conduzir ao diferente, ou seja, envolve o conceito de complexidade. Uma vez que a escola se encontra inserida numa realidade social diversificada, faz-se necessário compreender as condições e os condicionantes desta, de modo a definir o que deve ser objeto de estudo em seus currículos, tanto quanto o modo e a profundidade com os quais os conhecimentos serão abordados. Nessa perspectiva, defende-se que:

²⁵ Toda a legislação do sistema CONFEA/CREA encontra-se disponível no site: www.confea.org.br.

- A estreita articulação entre educação profissional e tecnológica e a educação básica deve ser entendida como requisito da formação integral do ser humano;
- A área do conhecimento que o curso enfatizará deverá ser claramente definida, visando à determinação dos conteúdos envolvidos, à escolha da metodologia a ser aplicada e à forma de validação e de avaliação crítica do conhecimento;
- O modelo de ensino-aprendizagem a ser adotado pressupõe a interação do sujeito com a realidade e do professor com o aluno, e implica a capacidade de interpretação do real e a possibilidade do conflito;
- A relação teoria e prática será entendida como eixo articulador da produção do conhecimento na dinâmica do currículo; o desenvolvimento da autonomia do aluno relaciona-se com os processos de construção e reconstrução do conhecimento;
- A pesquisa deve ser incorporada ao processo de aprendizagem do aluno, visando à modificação da sua atitude diante do mundo;
- O aluno deve ser instigado a formular e resolver problemas, possibilitando, desta forma, o desenvolvimento da sua capacidade de pesquisa;
- O objeto da aprendizagem deve ser compreendido como parte de uma realidade social diversificada;
- A prática e a ampliação dos conhecimentos adquiridos, mediante experiências em espaços e momentos de formação externos, como cursos extracurriculares, seminários, feiras, atividades culturais, farão parte dos processos formativos do aluno, na medida em que sua formação não se restringe à sala de aula.

Quanto à dimensão antropológica, entende-se que os sujeitos escolares envolvidos no processo de ensino-aprendizagem (professores, alunos e técnico-administrativos) fazem parte de uma teia de relações na qual o conhecimento é o resultado. O aluno é alguém que tem uma história, que traz expectativas e valores em relação ao mundo e ao seu próprio futuro. O professor e os técnico-administrativos também são sujeitos desse processo, uma vez que suas práticas profissionais são marcadas pelas experiências anteriores, ora pessoais, ora profissionais. Nesse sentido, o processo de ensino-aprendizagem relaciona-se com o universo dos sujeitos, particularmente do aluno, o que traz a necessidade de dialogar com as suas experiências e instigá-lo a lidar com desafios e situações novas. Portanto, entende-se que:

- A valorização dos profissionais da educação representa reconhecer a importância do seu papel como sujeitos ativos e de apoio no processo pedagógico;
- A valorização discente, com a garantia de igualdade de condições para acesso e permanência na Instituição, possibilita a inserção do aluno no processo ensinoaprendizagem como sujeito ativo;
- A interação entre os sujeitos socioculturais da escola constitui a base da sua atividade e a condição fundamental para a formação de um aluno politicamente preparado para atuar no mundo contemporâneo e contribuir para uma sociedade mais justa, democrática e igualitária;
- O aluno é sujeito socioeconômico cultural, que investiga, que questiona, que aprende;
- O professor e o técnico administrativo, que não admitem a possibilidade de não saberem e, portanto, não assumem a postura de aprender e renovar-se constantemente, dificilmente terão condições de possibilitar e apoiar o desenvolvimento dessas capacidades, por parte, também, do corpo discente;
- A valorização da dedicação integral ao ensino, à pesquisa e à extensão contribui para que docentes tenham uma práxis coerente com a proposta ensejada no Projeto Pedagógico Institucional (PPI).

Na dimensão axiológica, é essencial a sintonia com uma visão de mundo por parte da escola, expressa num modelo de sociedade e de educação que tenham como referência os grandes desafios do mundo contemporâneo e, em termos específicos, os desafios enfrentados pela Nação. Em relação a essa dimensão, não se pode desconhecer o saber acumulado pelas gerações passadas, particularmente aquele associado às áreas humanas e sociais, em suas contribuições para a construção da ética e da cidadania. Como fenômeno sócio-histórico, a aprendizagem é multicultural, não deve ser colocada a serviço de grupos e precisa superar os obstáculos à materialização desse caráter multicultural. Nesse sentido, o currículo deve levar em consideração que:

 A ciência e a tecnologia não podem ser tratadas meramente como meios para atingir os fins determinados pelo sistema de produção, mas, sim, como modos pelos quais o ser humano passa a interagir com o mundo, tendo-se, como referência a sua discussão atualizada e balizada numa postura reflexiva e ética;

- O processo de formação profissional deve estar comprometido com a ética e com o desenvolvimento humano;
- O currículo deve ser pensado de forma a promover a formação do aluno que saiba buscar alternativas, que tenha capacidade de avaliação e de intervenção no mundo:
- O currículo deve evidenciar as diversas práticas que possibilitem a formação de um profissional com visão crítica e social;
- O conhecimento e a prática técnico-científica precisam estar em contínua avaliação, mediada pela visão humanista e pela reflexão em torno dos valores que permeiam essas práticas.

No que se refere à dimensão teleológica, defende-se que a escola não pode ter um fim em si mesma. Seu destino é a busca do saber, tendo como meta a construção de uma sociedade mais justa, democrática e igualitária e a sua missão social precisa ser expressa em função desse propósito. Na escola tecnológica moderna, a primazia encontra-se no aspecto técnico-científico do conhecimento, porém o seu projeto tem um fundamento essencialmente político. A sua finalidade – o aspecto essencial que fundamenta e justifica sua existência, no âmbito da sociedade - consiste em tornar-se promotora de uma transformação na vida dos indivíduos que por ela passam e, por conseguinte, promover condições para que se atinjam as necessidades e os anseios societários. Para tanto, a elaboração do currículo deve pressupor que:

- Os fins a que a escola se propõe devem ser explicitados e conhecidos por aqueles que dela participam;
- Os fins a que a escola se propõe devem estar refletidos, dialeticamente, nos currículos dos cursos e nas práticas disseminadas no interior da escola;
- A definição dos fins da instituição constitui um processo dinâmico, devendo tornar-se atitude e prática que permeiam todas as ações;
- Os fins a que a escola se propõe precisam ser avaliados continuamente, para que não se cristalizem ou sejam dogmatizados;
- A reflexão crítica e a constante avaliação sobre as disputas e o jogo de interesses e de poder que influenciam projetos e ações no interior da escola são necessárias aos sujeitos envolvidos com o processo educativo para que sejam alcançados os fins a que este se propõe;

 A gestão democrática, participativa e transparente implica um posicionamento político necessário à consolidação de uma prática pedagógica democrática e autônoma.

Este Projeto Pedagógico do Curso orienta-se, pois, nesses pressupostos supracitados e detalhados.

4 ORGANIZAÇÃO DIDÁTICO-PEDAGÓGICA

Em consonância com os princípios descritos, a organização didático-pedagógica do curso tem como ponto de partida o perfil do egresso desejado, a partir do qual se definiram os objetivos do curso bem como as escolhas curriculares e didáticas relativas ao conteúdo e forma do ensino, por meio de disciplinas e outras atividades, além de suas formas de integração.

4.1 Perfil do egresso

O aluno egresso do Curso de Graduação em Engenharia de Automação Industrial do CEFET-MG/ Unidade Araxá deve ser um profissional com sólida formação científica e tecnológica no campo da Engenharia de Automação Industrial. Esse profissional deve ser capaz de compreender, desenvolver e aplicar tecnologias, com visão reflexiva, crítica e criativa e com competência para identificação, formulação e resolução de problemas. Somado a essas questões técnicas e científicas e de cunho operacional, o egresso também deve estar comprometido com a qualidade de vida numa sociedade cultural, econômica, social e politicamente democrática, justa e livre, visando ao pleno desenvolvimento humano aliado ao equilíbrio ambiental.

O egresso do curso de Engenharia de Automação Industrial é um profissional de nível superior, com formação e capacitação que o habilitam a atuar no projeto, manutenção e execução de sistemas de controle, nas etapas de planejamento, concepção e implantação, visando a integração dos fatores da técnica, melhoria de produtividade e da qualidade do produto.

Tendo em vista as contínuas e profundas transformações sociais ocasionadas pela velocidade com que têm sido gerados novos conhecimentos científicos e tecnológicos, sua rápida difusão na sociedade e seu uso pelo setor produtivo, o curso de Engenharia de Automação Industrial deverá enfatizar a formação do engenheiro generalista, sem deixar de

lado a preparação do engenheiro para a concepção e a execução contextualizada na concretização de projetos e outras atividades de sua área de atuação.

Pretende-se trabalhar na perspectiva da formação de um profissional crítico e criativo, uma vez que a função do engenheiro deixa de ser estritamente técnica, envolvendo aspectos humanos e sociais no trato com atividades gerenciais, financeiras e outras que exigem competência para identificar e lidar com os mais diversos problemas. Dessa forma, como componentes do perfil projetado para o Engenheiro de Automação Industrial, formado pelo CEFET-MG/Unidade Araxá, o curso proporciona a seus alunos condições de adquirir uma formação profissional multidisciplinar, que pode ser reforçada com a capacidade de:

- Utilizar a informática como ferramenta no exercício da Engenharia de Automação Industrial;
- Abordar, na forma experimental, os problemas que se apresentam;
- Operacionalizar problemas numéricos;
- Analisar e ensaiar circuitos;
- Gerenciar, operar e realizar manutenção em sistemas e processos característicos da área de habilitação em Engenharia de Automação Industrial;
- Planejar, supervisionar, elaborar e coordenar projetos de engenharia, na área de Automação Industrial;
- Desenvolver atividades práticas, analisando e interpretando resultados.

Além disso, consideramos necessário o trabalho político-pedagógico no sentido de que o futuro profissional adquira conhecimentos básicos de gerenciamento de recursos humanos, tenha a sensibilidade necessária para as questões humanas, sociais e ambientais, desenvolva uma visão crítica de ordens de grandeza na solução e interpretação de resultados em engenharia e articule essas qualificações a um senso econômico-financeiro contextualizado na sua realidade social.

Ao propor a reestruturação do Curso de Engenharia de Automação Industrial, a intenção do CEFET-MG/ Unidade Araxá é proporcionar aos seus alunos uma formação de cunho generalista, contemporânea, articulada ao contexto em que vive e atua, podendo exercer suas atividades em quaisquer áreas em que haja necessidade da intervenção da Engenharia de Automação. Aliado a isso, pretendemos que o futuro profissional também adquira, na sua formação, condições de desempenhar atividades profissionais, isoladamente ou em equipe, a fim de solucionar problemas específicos da sua área de atuação e, especialmente, aqueles que

se articulam ao contexto mais geral em que atua e a outras áreas relacionadas. Dessa forma, consideramos o que determina a Resolução CNE/CES 11/02, em relação às competências e habilidades gerais necessárias à profissão:

- Aplicar conhecimentos científicos, tecnológicos e instrumentais à engenharia;
- Projetar e conduzir experimentos e interpretar resultados;
- Conceber, projetar e analisar sistemas, produtos e processos;
- Identificar, formular e resolver problemas de engenharia;
- Planejar, supervisionar, elaborar e coordenar projetos e serviços de engenharia;
- Desenvolver e/ou utilizar novas ferramentas e técnicas;
- Supervisionar a operação e a manutenção de sistemas;
- Avaliar criticamente a operação e a manutenção de sistemas;
- Comunicar-se eficientemente nas formas escrita, oral e gráfica;
- Atuar em equipes multidisciplinares;
- Compreender e aplicar a ética e responsabilidade profissionais;
- Avaliar o impacto das atividades da engenharia no contexto social e ambiental;
- Avaliar a viabilidade econômica de projetos de engenharia;
- Assumir a postura de permanente busca de atualização profissional.

4.2 Objetivos do curso

O Curso de Engenharia de Automação Industrial do CEFET-MG/ Unidade Araxá tem como objetivo formar profissionais com sólida base teórica e prática nos conteúdos básicos, profissionalizantes e específicos desta engenharia, além de prepará-los para atuarem tanto no processo produtivo, quanto no desenvolvimento técnico e científico do País, considerando-se os aspectos políticos, sociais, culturais, econômicos, ambientais, humanos e éticos, no campo da gestão da Engenharia de Automação Industrial.

Aliado a esse objetivo geral e mais amplo, o Curso de Engenharia de Automação Industrial do CEFET-MG/ Unidade Araxá tem ainda os seguintes objetivos específicos:

- Conceder ao aluno competências técnicas e habilidades para o desempenho de diferentes atividades no campo da Engenharia de Automação Industrial;
- Estimular o aluno para autoanálise, no sentido de provocar a necessidade de uma educação continuada do engenheiro a ser formado;

- Incentivar o aluno para o trabalho de pesquisa e de investigação científica e tecnológica;
- Promover para o aluno o domínio de técnicas básicas de gerenciamento de recursos humanos e materiais necessários ao exercício da profissão do engenheiro;
- Proporcionar ao aluno condições de desenvolver uma sólida base para o uso da informática como instrumento no exercício da profissão;
- Possibilitar ao aluno desenvolver capacidade de comunicação interpessoal, em relação às questões humanas, sociais e ambientais e a articulação dessas no âmbito da sua atuação profissional.

4.3 Metodologia de ensino

A metodologia de ensino, numa perspectiva crítica, pode ser caracterizada como um "conjunto de princípios ou diretrizes sócio-políticos, epistemológicos e psicopedagógicos" que orientam estratégias para sua concretização no ensino (MANFREDI, 1993, p. 5). Ou, conforme Libâneo (2004), é o *caminho* para atingir os fins estabelecidos. Neste projeto, referese ao conjunto de orientações e procedimentos concebidos no âmbito curricular para informar "como" colocar em prática o currículo projetado para o curso.

Os pressupostos que orientam a proposta e a prática curricular do curso de Engenharia de Automação Industrial, alinhados aos princípios norteadores do CEFET-MG e em consonância com sua história, passam por quatro dimensões básicas, que envolvem: a concepção de conhecimento e sua forma de aplicação e validação; a visão sobre o ser humano com o qual relacionamos e que pretendemos formar; os valores que são construídos e reconstruídos no processo educacional; e os fins aos quais o processo educacional se propõe.

No CEFET-MG, os docentes são incentivados a desenvolver cada vez mais o espírito crítico e criativo dos discentes. O aluno é estimulado a agir interativamente, a formar parcerias e trabalhar em equipes de modo a desenvolver a capacidade de trabalhar com competências diversas e tecnologias modernas. Para isso, a metodologia de ensino utilizada no curso envolve aulas teóricas, aulas práticas em laboratórios especializados, atividades complementares, disciplinas de orientação de Trabalho de Conclusão de Curso, visitas técnicas, monitoria em disciplinas, iniciação científica e tecnológica, atividades de extensão comunitária, apoio técnico a laboratórios, atividades desenvolvidas em Empresa Júnior, participação em projetos de pesquisa e produção científica, participação em seminários, entre outras atividades curriculares

e de prática profissional. Essas atividades visam associar o conhecimento desenvolvido em sala de aula à experiência prática vivenciada nos laboratórios, bem como no ambiente profissional. Entre as atividades existentes no projeto pedagógico do curso que possibilitam a formação de um profissional com visão crítica e social, comprometido com a ética e com o desenvolvimento humano, que saiba buscar alternativas e que tenha capacidade de avaliação e de intervenção no mundo, destacam-se: 1. atividades de monitoria, nas quais alunos são estimulados a melhorar seus conhecimentos sobre os conteúdos de interesse; 2. atividades de iniciação científica e tecnológica, em que o aluno tem oportunidade de interagir com projetos de pesquisa, aprendendo a buscar, organizar e analisar informações com métodos científicos e apresentar resultados perante a comunidade científica; 3. trabalho de conclusão de curso, quando o aluno trabalha com um tema de interesse da área de conhecimento do curso, sob a orientação de um docente, sendo estimulado a pesquisar e aprofundar seus conhecimentos por meio do desenvolvimento de um projeto de duração de dois semestres. Ao longo do primeiro semestre, o aluno irá definir o tema, elaborar pesquisa bibliográfica sobre o mesmo e traçar um plano de trabalho para atingir os objetivos propostos. Estes resultados serão apresentados de forma escrita ao final do primeiro semestre ao orientador. O objetivo desta etapa é permitir ao aluno se familiarizar com o tema estudado e aprofundar seus conhecimentos sobre o mesmo. Ao longo do segundo semestre, o aluno irá desenvolver o trabalho proposto e redigir a monografia do Trabalho de Conclusão de Curso. O trabalho final deverá ser entregue em forma escrita e apresentado, de forma oral, a uma banca de avaliação de TCC; 4. estágio supervisionado, por meio do qual o aluno é estimulado a comprometer-se com o processo de atualização e de aprendizagem continuada no campo profissional, compreender e desenvolver visão sistêmica dos processos com os quais trabalha, desenvolver comunicação interpessoal, leitura, interpretação e representação simbólica e trabalhar em equipes multidisciplinares. As atividades de estágio contarão com um professor orientador para acompanhamento individual ao aluno em reuniões periódicas e um professor coordenador de estágios, responsável pelo acompanhamento de todos os alunos desenvolvendo estágio. Ao final do estágio, o aluno deverá entregar, após concordância do professor orientador, um relatório técnico. No curso de Engenharia de Automação Industrial, as práticas interdisciplinares são estimuladas visando ao alcance de um conhecimento unitário, onde a integração de todas as disciplinas e a ligação delas com a realidade do aluno tornam o conhecimento real e atrativo. Dessa forma, os docentes são incentivados a ir além de sua própria especialidade, tomando consciência de seus próprios limites, para acolher as contribuições das outras disciplinas. A avaliação da aprendizagem adotada nos cursos de Graduação do CEFET-MG é realizada em função dos objetivos previstos no projeto pedagógico do curso. A avaliação acontece de forma continuada, conforme normas acadêmicas estabelecidas para todos os cursos de graduação do CEFET-MG. Faz-se o uso combinado de várias técnicas e instrumentos de avaliação. O Sistema de avaliação do rendimento escolar dos cursos de graduação do CEFETMG é regulamentado pelas Normas Acadêmicas dos Cursos de Graduação, aprovada pela Resolução CEPE nº 12/2007. Assim, evidencia-se que a metodologia constante no PPC está de acordo com as DCN para os cursos de engenharia, atende ao desenvolvimento de conteúdos, às estratégias de aprendizagem, ao contínuo acompanhamento das atividades, à acessibilidade metodológica e à autonomia do discente, coaduna-se com práticas pedagógicas que estimulam a ação discente em uma relação teoria-prática, sendo claramente inovadora e embasada em recursos que proporcionam aprendizagens diferenciadas dentro da área.

4.3.1 Estágio

Consoante a Política de Estágio do CEFET-MG, esta deve ser construída em conjunto com os setores de ensino e de relações empresariais da Instituição, entendendo o estágio como um ato educativo que envolve as dimensões de ensino, pesquisa e extensão, como instrumento para inserção no mundo do trabalho, para o exercício da profissão e da cidadania, sendo componente obrigatório em cada curso da Instituição.

Ao longo do estágio, o aluno recebe orientação acadêmica e profissional e deve, ao concluí-lo, apresentar um seminário relativo ao trabalho prático desenvolvido. Tudo isso é desenvolvido a partir da disciplina de Estágio Supervisionado, cujos objetivos, de acordo com a Resolução CGRAD 004/09, de 11 de fevereiro de 2009, são os seguintes:

- "(a) avaliar a real capacidade de o aluno exercer, de maneira competente, a profissão de Engenheiro de Automação Industrial no mercado de trabalho;
- (b) criar um espaço de transição entre a vida estudantil e a vida profissional, atenuando o impacto da transformação aí implícita;
- (c) criar um campo de experiências e conhecimentos que constitua uma possibilidade de articulação teoria-prática e que estimule a inquietação intelectual dos alunos;
- (d) desenvolver habilidades, hábitos e atitudes pertinentes e necessários para o exercício da cidadania e da profissão de Engenheiro de Automação Industrial;

(e) propiciar, através da diversificação dos espaços educacionais, a ampliação do

universo cultural dos alunos;

(f) favorecer o exercício continuado do pensamento crítico-reflexivo sobre a

realidade profissional do Engenheiro de Automação Industrial e do mundo do trabalho em si;

(g) contextualizar, reavaliar, atualizar e aperfeiçoar os projetos pedagógicos da

Instituição, partindo do pressuposto do seu constante acompanhamento, orientação e

avaliação."26

4.3.2 Atividades Complementares

O curso de Engenharia de Automação Industrial prevê 187,5 h. ou 225 h-a de

atividades complementares para integralização do currículo, que devem se pautar pelas

seguintes resoluções dos cursos de graduação do CEFET-MG:

• Resolução CEPE 39/10, de 18 de novembro de 2010, que altera a Resolução

CEPE 24/08, de 11 de abril de 2008, e determina os tipos de atividades

complementares a serem incluídas como atividades de caráter optativo para fins de

integralização curricular.

• Resolução CGRAD 17/11, de 8 de junho de 2011, que aprova o regulamento

geral das outras atividades complementares permitidas para integralização do curso.

• Resolução CGRAD 19/11, de 29 de junho de 2011, que aprova o regulamento

geral das atividades de prática profissional dos cursos de graduação do CEFET-

MG.

4.3.3 Trabalho de Conclusão de Curso

Outra atividade curricular obrigatória para a formação do Engenheiro de

Automação Industrial, o Trabalho de Conclusão de Curso – TCC é de caráter individual e de

natureza científica, em campo do conhecimento que mantenha correlação direta com o curso de

Engenharia de Automação Industrial. Disciplinas de orientação ao TCC, bem como de

metodologia científica e de pesquisa estão contempladas na matriz curricular do curso. O TCC

é regulamentado pela Resolução CGRAD 018/10, de 06 de junho de 2010.

²⁶ Cf. CEFET-MG (2005b, p.19-20)

Assim, o TCC é desenvolvido junto à disciplina Orientação de TCC, que integra a matriz curricular do curso. Cabe ao professor da disciplina conduzir as atividades, orientar e acompanhar o aluno pelos caminhos científicos do tema escolhido. O trabalho deve ser desenvolvido com a participação de um professor orientador e de outros professores responsáveis por cada Eixo Temático, que também têm a função de orientação no que diz respeito aos conteúdos específicos do trabalho. É objetivo do TCC consolidar os conteúdos vistos ao longo do curso em um trabalho de pesquisa aplicada e/ou de natureza projetual, possibilitando ao aluno a integração entre teoria e prática²⁷, e verificando a capacidade de síntese das vivências do aprendizado adquiridas durante o curso.

Para a realização do TCC, o aluno deve estar devidamente matriculado na disciplina Orientação de TCC, e caberá ao professor da disciplina estipular os prazos para entrega do projeto de pesquisa, sendo que a entrega da versão definitiva do trabalho é requisito para o aluno ser considerado aprovado na disciplina. A avaliação do TCC deve ser realizada segundo critérios específicos para a apresentação oral do trabalho e para a versão escrita, e atende às normas de funcionamento estabelecidas no regulamento institucional elaborado e aprovado em Colegiado para este fim.

Em conformidade com a Resolução CGRAD 018/10, foi criado pelo Colegiado do Curso o Regulamento Interno dos Trabalhos de Conclusão de Curso (TCC) da Engenharia de Automação Industrial, o qual foi atualizado pela Resolução do Colegiado 015/18, de 12 de setembro de 2018.

Por meio desta Resolução, foram incluídos os incisos VIII e IX ao Regulamento Interno, que ficou assim constituído:

- I O orientador de TCC deverá ser professor efetivo do CEFET-MG/ unidade Araxá;
- II Haverá limite de dois projetos de TCC por professor orientador, por ano letivo;
- III A participação de professores em bancas examinadoras limita-se a duas, quando o professor não for orientador ou co-orientador de projeto de TCC;
- IV Torna-se obrigatória a participação do aluno no Seminário de Qualificação de Projetos de TCC ao final da disciplina TCC I;
- V Torna-se obrigatória a utilização das *templates* de "PROJETO de TCC" e de "REDAÇÃO FINAL do TCC" como forma de padronização dos trabalhos;

²⁷ Cf. CEFET-MG (2005b, p.19-20)

VI -Na composição da banca examinadora o professor orientador enviará ao Colegiado, em formulário próprio, os nomes dos professores indicados, sendo que pelo menos um professor deverá ser da área específica do projeto e atuar nos cursos de graduação do CEFET-MG; os demais professores ou profissionais de empresas, indicados, devem possuir no mínimo um curso de graduação;

VI - Manter, preferencialmente, a mesma banca avaliadora do Seminário de Qualificação do Projeto de TCC para avaliar a apresentação damonografia.

VIII - Ao Artigo 8º do Regulamento Geral dos TCC, sobre competências do aluno, acrescentam-se as alíneas:

- a) O aluno só será submetido à avaliação da banca examinadora, após aprovação da monografia pelo professor orientador, devidamente registrada pelo professor da disciplina TCC II;
- b) A alteração de orientador de TCC II no semestre vigente só poderá ser solicitada por motivos de afastamento, de licença, de saúde, falecimento, ou discórdia entre as partes, circunstância em que fica estabelecido um prazo para solicitação de até o último dia para trancamento total, conforme calendário da graduação;
- c) (inciso V): O aluno deve cumprir as etapas de redação e apresentação oral, de acordo com as normas estabelecidas pelo Colegiado do Curso, *como requisito para deferimento da apresentação do projeto*.

IX - Ao Artigo 13º do Regulamento Geral dos TCC, sobre as atribuições do professor orientador, será incluída a alínea:

a) O preenchimento de formulários de formalização de encontros e de avaliação do desenvolvimento do TCC II é obrigatório tanto para o orientador como para o aluno.

4.3.4 Implantação e integração das atividades de ensino, pesquisa e extensão

A implantação de atividades de pesquisa e extensão é facilitada pela flexibilização curricular e integração de alunos, docentes e empresas em atividades extraclasse como visitas técnicas, monitoria em disciplinas, iniciação científica e tecnológica, atividades de extensão comunitária, apoio técnico a laboratórios, atividades desenvolvidas em Empresa Júnior, participação em projetos de pesquisa e produção científica, participação em seminários, outras atividades curriculares e de prática profissional, com observância à Lei 13.005/2014, segundo a qual os cursos de graduação destinarão até 10% de suas cargas horárias totais a atividades de extensão. Ressalta-se que no CEFET-MG a resolução específica sobre o assunto revisará a Resolução 24/2008 do CEPE, criando regulamentação interna, com revisão das atividades complementares, excluindo-se de entre elas as de extensão, que passarão a constituir um tipo específico de atividades no âmbito do curso.

A participação dos alunos em atividades de pesquisa e extensão oferece-lhes a

possibilidade de relacionar teoria e prática, devido a sua inserção na realidade da profissão

por meio de laboratórios específicos e equipados durante todo o curso. Tais atividades

concedem ao aluno competências técnicas e habilidades para o desempenho de diferentes

atividades no campo da Engenharia de Automação Industrial, além de incentivá-lo ao trabalho

de pesquisa e de investigação científica e tecnológica.

Atividades de Pesquisa e Extensão no Âmbito do Curso

I - Núcleo de Pesquisa em Energias Alternativas e Eletrônica Industrial

Descrição: Grupo de pesquisadores do CEFET-MG/ Unidade Araxá, com finalidade de estudar,

pesquisar e propor soluções em energias alternativas emergentes através de equipamentos

da eletrônica de potência para aplicações industriais.

Projetos de extensão desenvolvidos pelo Núcleo

i) Instalações Elétricas e energias alternativas (processo: 23062.4023/14-78)

ii) Calibração e Certificação de Energia Photovoltaica

iii) Paralelismo de Inversores PWM em MicroGrids

iv) Modelamento de Cargas Eletrônicas para PWM

v) Centro de Carga de Baterias Motivas

vi) Emulador de Célula a Combustível

II - Núcleo de Desenvolvimento de Robótica (NDR)

Objetivo: Promover a participação de discentes dos cursos de engenharia e técnicos em

atividades de extensão de forma a ampliar a integração entre o CEFET-MG e a sociedade,

ampliando o interesse dos estudantes em pesquisas e projetos de extensão relacionados às

áreas da eletrônica, mecânica e programação a partir do desenvolvimento de equipamentos e

novas tecnologias que atendam às necessidades em automação e controle.

Projeto de extensão desenvolvido pelo Núcleo

i) TorC (Torneio de Robótica)

O curso de Engenharia de Automação Industrial da Unidade Araxá do CEFET-MG realiza no mês

de Outubro o Torneio de Robótica – ToRC, propiciando integração da comunidade com a

instituição e entre os alunos participantes do evento. Os objetivos do torneio são contribuir

para o desenvolvimento científico e tecnológico, integrar os alunos e criar alianças entre as

universidades da região torneio possibilita aos participantes desenvolver trabalhos em grupo

através da troca de experiências no desenvolvimento dos respectivos projetos.

III - Outros projetos de extensão realizados no curso:

i) Treinamento em instalação de Painel Solar Fotovoltagem

ii) Inclusão digital para jovens e adultos de baixa renda

Objetivo: promover a participação de discentes dos cursos de Engenharia de Automação

Industrial e de Minas em atividades de extensão de forma a promover a integração entre o

CEFET-MG e a sociedade, contribuindo para a melhoria das condições de vida das

comunidades, priorizando as demandas de relevância cultural, social e tecnológica, e

fortalecendo a relação entre ensino, pesquisa e extensão.

V- Projetos de extensão em parceria com empresas

INSTALE Tecnologia

i) Desenvolvimento de dispositivos que possibilitam o uso de energia solar com iluminação por

LED de alta potência para o uso em ambientes sem fontes de energia elétrica

ii) Desenvolvimento de Tecnologia para a Orientação e Monitoramento Remoto de Pessoas e

Equipamentos dentro de mineradoras subterrâneas

Secretaria Municipal de Educação de Araxá

i) Artes e Ofícios – Protécnico nas escolas públicas da rede municipal de educação de Araxá

(processo: 23062.1448/11-11)

Descrição: Projeto de Cooperação técnica, científica e cultural entre os partícipes, visando ao

desenvolvimento de monitorias preparatórias, com o envolvimento de alunos dos cursos de

Engenharia de Automação Industrial e de Minas, coordenados por professor efetivo do CEFET-

MG/ Unidade Araxá, com o objetivo de promover o intercâmbio de conhecimentos e repassar

conhecimento sobre conteúdos específicos exigidos nos processos de seleção.

4.4 Estrutura curricular e seus componentes

O Projeto Pedagógico do Curso apresenta uma visão filosófica e uma concepção

pedagógica que têm como referência:

• Possibilitar e incentivar a integração interdisciplinar, de modo a favorecer o

diálogo entre os docentes e a construção de propostas conjuntas;

• Reduzir o tempo de permanência do aluno em sala de aula, favorecendo as

atividades extraclasse, sem, no entanto, comprometer a sólida formação básica

e profissional do aluno, conforme sugerido na Resolução CNE/CES 11/02;

• Viabilizar a flexibilidade na oferta curricular, visando a atender às demandas de

atualização constantes de ementas e planos de ensino;

• Ampliar a diversidade de opções para os estudantes, possibilitando-lhes dentro

de amplos limites, liberdade para planejar seu próprio percurso e opção quanto

às disciplinas e atividades a serem realizadas na etapa de finalização de seu

curso, em função da especialidade profissional que escolherem;

Possibilitar uma integração efetiva e consistente da graduação com a pós-

graduação e com a pesquisa científica e tecnológica.

O modelo curricular, organizado de modo a viabilizar os aspectos acima descritos,

é estruturado em Eixos de Conteúdos e Atividades, a partir dos quais são desmembradas as

disciplinas e as práticas pedagógicas constituintes do currículo. Nesta estrutura curricular, são

considerados os seguintes aspectos:

O currículo é descrito a partir dos Eixos de Conteúdos e Atividades que o

compõem;

- Cada Eixo de Conteúdos e Atividades descreve os conteúdos curriculares e/ou tipos de atividades desenvolvidas e a carga horária do eixo;
- Os conteúdos e atividades curriculares constituem a estrutura básica do currículo, a partir dos quais são desdobradas as disciplinas e as atividades curriculares;
- Os conteúdos curriculares são classificados dentro dos parâmetros estabelecidos pelas Diretrizes Curriculares Nacionais do Curso de Graduação em Engenharia (Resolução CNE/CES 11/02) em núcleos de conteúdos básicos, profissionalizantes e específicos;
- As disciplinas e atividades de práticas profissionais são destacadas em um eixo específico e buscam integrar conhecimentos de diversos eixos de forma interdisciplinar: Trabalho de Conclusão de Curso I (TCC I), Trabalho de Conclusão de Curso II (TCC II), Estágio Supervisionado, Estágio Curricular e Atividades Complementares Iniciação Científica e Tecnológica, Atividade de Extensão (realizadas em empresas, órgãos governamentais, ONGs, comunidades etc.), produção científica, pesquisa tecnológica, participação em congressos e seminários, desenvolvimento de atividade em empresa júnior, dentre outras;
- Os conteúdos e atividades descritos nos eixos (envolvendo denominação do eixo, carga horária e descrição dos conteúdos, obrigatórios e optativos) deverão ser aprovados no Conselho de Ensino, Pesquisa e Extensão;
- As disciplinas (envolvendo denominação da disciplina, carga horária e ementas)
 e atividades (envolvendo normas para desenvolvimento de TCC, de Estágio
 Curricular, de atividades complementares e respectivas cargas horárias) deverão
 ser aprovadas na esfera do Conselho de Graduação da Instituição;
- Os planos de ensino das disciplinas que forem específicos do curso deverão ser aprovados na esfera do Colegiado do respectivo curso;
- A vinculação dos professores aos eixos é de natureza essencialmente pedagógica, permanecendo a vinculação funcional ao Departamento de origem do professor. Essa vinculação será objeto de proposta aprovada pelo Colegiado de Curso;
- Um professor poderá estar vinculado simultaneamente a mais de um eixo, de acordo com sua formação e competência profissional.

A fim de se promover a integração entre as disciplinas de um mesmo eixo e, ainda, a interdisciplinaridade entre eles, cada eixo deverá ter um coordenador. O Colegiado do Curso deverá definir as questões de ordem administrativa para a implantação das Coordenações de Eixos.

4.4.1 A estrutura de apresentação dos eixos

Os Eixos de Conteúdos e Atividades estão apresentados na forma de dois quadros, nos quais estão indicadas as informações relativas aos conteúdos (obrigatórios e optativos), disciplinas com respectivas cargas horárias e classificações em termos das diretrizes curriculares. Os quadros a seguir exemplificam a descrição desses eixos, com a indicação das esferas de decisão em relação a eles, considerando os órgãos colegiados competentes no CEFET-MG, no que diz respeito às suas definições e orientações.

Quadro 1 - Descrição dos conteúdos obrigatórios

	Esfera de decisão
Conteúdos Obrigatórios: refere-se aos conteúdos que o estudante deverá cursar necessariamente para integralização do curso: - Descreve os conteúdos gerais obrigatórios Os conteúdos gerais e suas respectivas cargas horárias.	Diretoria de Graduação e Conselho de Graduação
 Desdobramento em disciplinas: relaciona as disciplinas do Eixo que compõem a estrutura curricular obrigatória: A relação das disciplinas, descrição dos conteúdos disciplinares para cada uma e respectivas cargas horárias. Os Planos de Ensino e planos didáticos atualizados. 	Colegiado de Curso e

Quadro 2 - Descrição de conteúdos optativos

	Esfera de decisão
Conteúdos Optativos: refere-se aos conteúdos que o estudante poderá cursar parcialmente, como parte dos créditos destinados às disciplinas optativas do curso.	Diretoria de Graduação e Conselho de Graduação
Desdobramento em disciplinas: Relaciona as disciplinas que compõem a estrutura curricular optativa: - A relação das disciplinas, descrição dos conteúdos disciplinares para cada disciplina e respectiva carga horária Dentro do conjunto de disciplinas optativas do curso, o estudante poderá escolher disciplinas e/ou complementares relacionadas neste quadro, dentro dos limites curriculares Os Planos de Ensino e planos didáticos atualizados.	Colegiado de Curso e Assembleia Departamental

4.4.2 Eixos de Conteúdos e Atividades: Desdobramento em Disciplinas

Tendo em vista o desdobramento dos eixos em disciplinas, estas são distribuídas nos seguintes tipos de disciplina assim definidos:

- Disciplinas Obrigatórias: são as disciplinas do Curso de Graduação em Engenharia de Automação Industrial do CEFET-MG que compõem a estrutura curricular de caráter obrigatório;
- Disciplinas Optativas: são as disciplinas do Curso de Graduação em
 Engenharia de Automação Industrial do CEFET-MG que compõem a estrutura
 curricular do curso, porém não são obrigatórias. Dentre estas, será ofertada
 todo semestre a disciplina de Libras, a fim de promover a inclusão social e

- interação entre os discentes, conforme Resolução CGRAD 026/09, de 09 de dezembro de 2009, e homologada pelo CEPE n°29/10;
- Disciplinas Eletivas: são quaisquer disciplinas dos cursos de graduação do CEFET-MG que não estejam incluídas no currículo pleno do curso de origem e cujo conteúdo não seja previsto, mesmo que parcialmente, no curso de origem;
- **Crédito:** cada 15 h-a de atividade curricular correspondem a 1 crédito.

A síntese da estrutura curricular está apresentada na Tabela 5 a seguir.

Tabela 5 - Composição da carga-horária total do curso

	Créditos	Carga horária (horas)	Carga horária (horas- aula)28	Percentual do total (%)
Disciplinas obrigatórias	233	2912,5	3495	79,90%
Disciplinas optativas e eletivas	20	250	300	6,86%
Estágio curricular obrigatório	24	300	360	8,23%
Atividades complementares	15	187,5	225	5,14%
Carga horária total do curso	292	3.650	4.380	100,00%

A respeito da Tabela 5, cabe observar que:

- 1) A carga horária mínima exigida para o Estágio Curricular, segundo a Resolução CNE/CES 11/02, é de 160 horas. Entretanto, no curso de Engenharia de Automação Industrial equivale a 300 horas. Essa carga horária, que estimula a redução de tempo em sala de aula a favor do aprendizado extraclasse, pretende dar ao aluno a oportunidade de aprendizado consistente no mercado de trabalho, em consonância com as DCN;
- 2) 13,37% da carga horária total do curso, 487,5 horas, correspondem às atividades curriculares realizadas extraclasse (estágio supervisionado, atividades complementares), o que significa uma redução do tempo em sala de aula, conforme recomenda a Resolução CNE/CES 11/02. Dessas, 225 h-a (187,5 horas), 5,14% do total, consistem em atividades complementares, tais como: monitoria em disciplinas, iniciação científica e tecnológica, atividades de extensão, apoio técnico a laboratórios, atividades desenvolvidas em empresa júnior, produção científica,

-

 $^{^{28}}$ A unidade hora utilizada refere-se à definição estabelecida no artigo 3° da Resolução MEC N° 3, de 3 de julho de 2007.

participação em seminários, outras atividades curriculares e de prática profissional, desde que aprovadas pelo Colegiado do Curso;

- 3) O aluno deverá cumprir obrigatoriamente 250 horas (20 créditos) em disciplinas disponíveis como optativas ou eletivas, direcionando a sua formação curricular;
 - 4) A integralização mínima para realização do estágio curricular é 2750 h-a;
- 5) Igualmente, o aluno deverá cumprir, obrigatoriamente, 2750 h-a para realizar o Trabalho de Conclusão de Curso I (TCCI);
 - 6) A integralização do curso, pela sua concepção, ocorre em dez semestres.

4.4.3 Definição da carga horária das disciplinas e do tempo escolar

A carga horária do curso será distribuída em cinco aulas de 50 minutos por dia, no período integral, totalizando 40 h-a semanais, em módulos de 100 minutos: de 14h às 15h40min, 15h50min às 17h30min, 19h às 20h40min e 20h50min às 22h30min, com intervalo de 10 minutos entre os módulos. Além disso, os sábados serão reservados para atividades normais e extraclasse, de 7h às 11h25min, favorecendo o trabalho individual e em grupo dos estudantes e professores, em função de alguma impossibilidade que possa ocorrer de segunda à sexta-feira, conforme orienta a Resolução CNE/CES 11/2002, já que essas atividades estão incluídas na carga horária total do curso.

A carga horária total do curso é de 3650 horas, já incluída a atividade de estágio curricular a ser realizado, conforme o Parecer CNE/CES nº 329, aprovado em 11 de novembro de 2004, e de atividades complementares, conforme resolução CEPE 24/08, de 11 de abril de 2008. Assim, a estrutura curricular é sintetizada da seguinte forma:

- 3650 h., sendo 3350 h. em 10 semestres letivos e 300 h. de estágio;
- Média de 335 h. por semestre;
- Média de 22,4 h. por semana, com 15 semanas por semestre;

4.4.3.1 Disciplinas e atividades por eixo

Nessa seção apresentam-se as disciplinas e as atividades de cada eixo, com a descrição da ementa, objetivos, carga horária (em horas e horas-aula), pré-requisitos, corequisitos, classificação DCN e natureza de cada uma, além de seus nomes e abreviações.

EIXO 01: M	ATEMÁTICA E COMPUTAÇÃO			
			Carga h	orária tota
			Horas	H-a
			587,5	705
Desdobrame	ento em disciplinas obrigatórias			
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 575	Horas- aulas 690
MAT1.1	Cálculo I	Básica	75	90
MAT1.2	Cálculo II	Básica	75	90
MAT1.3	Cálculo III	Básica	50	60
MAT1.4	Cálculo IV	Básica	50	60
MAT1.5	Geometria Analítica e Álgebra Vetorial	Básica	75	90
MAT1.6	Estatística	Básica	50	60
MAT1.7	Álgebra Linear	Básica	50	60
MAT1.8	Métodos Numéricos Computacionais	Básica	50	60
CMP1.9	Programação de Computadores I	Básica	25	30
CMP1.10	Laboratório Programação de Computadores I	Básica	25	30
CMP1.11	Programação de Computadores II	Básica	25	30
CMP1.12	Laboratório Programação Computadores II	Básica	25	30
Desdobrame	ento em disciplinas optativas	1		· ·
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 12,5	Horas- aula 15
OPT1.13	Tópicos Especiais em Matemática e Computação Específica		12,5	15
	CÁLCULO I MAT1.1			
CARGA HOR	ÁRIA (horas-aula)	CRÉDITOS	NATUI	REZA
Γeórica 90	Prática Total - 90	6	Obrigat	ória
PRÉ-REQUIS		TO		

- Utilizar os conceitos de função, limite e continuidade, e interpretação de gráficos, na análise de situações práticas;
- Aplicar as funções exponenciais, logarítmicas, trigonométricas e trigonométricas inversas a problemas reais;
- Perceber a relação do conceito de limite com os conceitos de derivada e de integral definida;
- Reconhecer derivadas como taxas de variação, identificando grandezas que são definidas a
 partir do conceito de derivada. Empregar a derivada de uma função para determinar seu
 comportamento, bem como para tratar problemas de maximização e minimização;
- Aplicar técnicas de derivação em diversos contextos, tais como em problemas de otimização e taxas relacionadas;

- Familiarizar-se com técnicas de construção de gráficos;
- Compreender os conceitos de integral definida e de integral indefinida, bem como sua relação, por meio do Teorema Fundamental do Cálculo;
- Calcular grandezas que são definidas como integrais definidas ou como integrais impróprias;
- Utilizar técnicas de integração para resolver problemas;
- Conceituar e desenvolver aplicações práticas de derivadas e integrais;
- Perceber que o cálculo é um instrumento indispensável para a aplicação de técnicas de trabalhos atuais em diversos campos;
- Entender o cálculo como um estudo de mudanças, dos movimentos, investigando os efeitos das pequenas mudanças (Cálculo Diferencial) e os efeitos cumulativos das pequenas mudanças (Cálculo Integral);
- Ter consciência da importância do Cálculo Diferencial e integral como base para a continuidade de seus estudos.

EMENTA: Funções reais: limites, continuidade, gráficos; derivadas e diferenciais: conceito, cálculo e aplicações; máximos e mínimos; concavidade; funções elementares: exponencial, logaritmo, trigonométricas e inversas; integrais definidas: conceito, teorema fundamental e aplicações; integrais indefinidas: conceito e métodos de integração; integrais impróprias.

NÚCLEO DE FORMAÇÃO DCN: Básica EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 1 – Matemática e Computação

Disciplina:	CÁLCULO II
Abreviação:	MAT1.2

CARGA HORÁI	RIA (horas-aula)		CRÉDITOS	NATUREZA
Teórica	Prática	Total	6	Obnicatónia
90	-	90	0	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MAT1.1	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Esboçar gráficos de funções simples de duas variáveis, manualmente ou por computador;
- Esboçar gráficos de curvas em coordenadas polares, calculando suas áreas;
- Calcular derivadas parciais e derivadas direcionais e utilizá-las em aplicações;
- Calcular integrais duplas, com uso de coordenadas cartesianas e polares;
- Calcular integrais triplas, com uso de coordenadas cartesianas, cilíndricas e esféricas;
- Mudar de coordenadas em integrais duplas e triplas;
- Calcular integrais de caminho e de superfície;
- Relacionar integrais de caminho e de superfície com integrais duplas e triplas, com o uso de teoremas integrais;
- Usar todos os tipos de integrais no cálculo de áreas, volumes, momentos e centroides;
- Perceber que o cálculo é um instrumento indispensável para aplicação em trabalhos atuais em diversos campos;
- Ter consciência da importância do cálculo diferencial e integral como base para a continuidade de seus estudos;

• Aptidão para reconhecer e equacionar problemas práticos que sejam representados por integrais de linha e superfície.

EMENTA: Funções reais de várias variáveis: limites, continuidade, gráficos, níveis; derivadas parciais: conceito, cálculo e aplicações; coordenadas polares cilíndricas e esféricas: elementos de área e volume; integrais duplas e triplas em coordenadas cartesianas e polares: conceito, cálculo, mudanças de coordenadas e aplicações; campos vetoriais; gradiente, divergência e rotacional; integrais curvilíneas e de superfície; teoremas integrais: Green, Gauss e Stokes.

NÚCLEO DE FORMAÇÃO DCN: Básica EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 1 – Matemática e Computação

Disciplina: CÁLCULO III
Abreviação: MAT1.3

CARGA HORÁI	RIA (horas-aula)		CRÉDITOS	NATUREZA
Teórica	Prática	Total	4	Obmicatómia
60	-	60	7 4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MAT1.2	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Reconhecer problemas passiveis de tratamento por equações diferenciais;
- Elaborar modelos simples com a linguagem das equações diferenciais;
- Identificar tipos comuns de equações diferenciais;
- Resolver equações diferenciais de primeira ordem e lineares de segunda ordem;
- Compreender o conceito de transformada de Laplace;
- Conhecer aplicações e propriedades das transformadas de Laplace;
- Aplicar transformadas de Laplace à resolução de equações diferenciais;
- Perceber que o cálculo é um instrumento indispensável em diversos campos;
- Ter consciência da importância do cálculo como base para a continuidade de seus estudos;

EMENTA: Equações diferenciais ordinárias de primeira ordem: resolução e aplicações; equações diferenciais lineares de ordem superior; sistemas de equações diferenciais; transformada de Laplace e sua aplicação em equações diferenciais.

NÚCLEO DE FORMAÇÃO DCN: Básica

Disciplina:	CÁLCULO IV
Abreviação:	MAT1.4

CARGA HORÁ	RIA (horas-aula)		CRÉDITOS	NATUREZA
Teórica	Prática	Total	4	Obnicatánia
60	-	60	7 4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MAT1.3	-

- Compreender e calcular limites de sequencias numéricas;
- Compreender processos de soma infinita e decidir sobre sua convergência;
- Desenvolver funções em séries de Taylor ou series de Fourier;
- Usar a série de Taylor para obter aproximações polinomiais;
- Usar a série de Fourier para obter aproximações em soma de senóides;
- Compreender um problema de contorno com equação diferencial parcial (EDP);
- Compreender processos de separação de variáveis em EDP;
- Usar séries de Fourier na resolução de problemas de contorno em EDP.
- Saber resolver alguns casos especiais de equações de calor, onda e Laplace;
- Perceber que o cálculo é instrumento indispensável para a aplicação em diversos campos;
- Ter consciência da importância do cálculo como base para a continuidade de seus estudos.

EMENTA: Séries numéricas e de potências; séries de Taylor e aplicações; séries de Fourier; transformada de Fourier; equações diferenciais parciais; equações da onda, do calor e de Laplace.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 01 – Matemática e Computação

Disciplina:	GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL
Abreviação:	MAT1.5

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	6	Obnicatónia
90	-	90	0	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Resolver sistemas lineares;
- Realizar operações básicas envolvendo vetores;
- Aplicar as técnicas vetoriais a problemas em geometria plana e espacial;
- Representar e identificar retas, planos, cônicas e quádricas por equações;
- Determinar intersecções, distancias e ângulos entre retas e planos;
- Calcular autovetores e autovalores de uma matriz;
- Obter as equações reduzidas/canônicas de cônicas e quádricas a partir de equações quadráticas.

EMENTA: Equações analíticas de retas, planos e cônicas; vetores: operações e bases; equações vetoriais de retas e planos; equações paramétricas; álgebra de matrizes e determinantes; autovalores; sistemas lineares: resolução e escalonamento; coordenadas polares no plano; coordenadas cilíndricas e esféricas; superfícies quádricas: equações reduzidas (canônicas).

NÚCLEO DE FORMAÇÃO DCN: Básica EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 01 – Matemática e Computação

Disciplina:	ESTATÍSTICA
Abreviação:	MAT1.6

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	1	Obmicatómia
60	-	60	4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MAT1.1	MAT1.2

- Entender a estatística como método de apoio às outras ciências e saber relacioná-la com os diferentes campos do conhecimento;
- Familiarizar-se com o raciocínio probabilístico;
- Ter conhecimentos básicos para a compreensão adequada dos métodos estatísticos e noções da inferência estatística;
- Conhecer os fundamentos da estatística como instrumento de computação e avaliação e análise de dados experimentais;
- Resolver problemas utilizando recursos computacionais.

EMENTA: Elementos de probabilidade: variáveis aleatórias discretas e contínuas; distribuições de probabilidades; tratamento de dados; amostragem e distribuições amostrais; estimação; teste de hipótese e intervalo de confiança; correlação e regressão.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 01 – Matemática e Computação

Disciplina:	ÁLGEBRA LINEAR
Abreviação:	MAT1.7

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	4 Obrigatária	
60	-	60	7	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MAT1.2; MAT1.5	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Ser capaz de reconhecer e trabalhar com propriedades de espaços vetoriais;
- Ser capaz de reconhecer subespaços vetoriais;
- Saber aplicar mudanças de base;
- Saber calcular autovalores e autovetores e interpretar seus papéis em problemas;
- Saber obter vetores ortogonais a vetores dados;
- Ser capaz de trabalhos com propriedades de produto interno;
- Ser capaz de reconhecer que elementos e/ou soluções de problemas de engenharia, ou de outra área da matemática, constituem um espaço vetorial e explorar os tópicos estudados em sua solução.

EMENTA: Espaços vetoriais, subespaços, bases, dimensão; transformações lineares e representação matricial; autovalores e autovetores; produto interno; ortonormalização; diagonalização; formas quadráticas; aplicações.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 01 – Matemática e Computação

Disciplina:	MÉTODOS NUMÉRICOS COMPUTACIONAIS
Abreviação:	MAT1.8

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	al A Obrigatória	
60	-	60] 4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
CMP1.11	MAT1.3

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Compreender como os computadores representam e operam números;
- Analisar os erros obtidos devido à aplicação de métodos numéricos e propor soluções para se minimizá-los ou mesmo eliminá-los, quando for possível;
- Conhecer e aplicar os principais métodos numéricos computacionais para a resolução de sistemas de equações algébricas lineares;
- Conhecer e aplicar os principais métodos numéricos computacionais para a interpolação polinomial e ajuste de curvas;
- Conhecer e aplicar os principais métodos numéricos computacionais para o cálculo integral e diferencial de funções de uma ou mais variáveis;
- Conhecer e aplicar os principais métodos numéricos computacionais para o cálculo de raízes de funções;
- Conhecer e aplicar os principais métodos numéricos computacionais para a solução de equações diferenciais ordinárias;
- Conhecer aplicações de métodos numéricos computacionais para a simulação ou resolução de problemas clássicos nas ciências exatas e engenharias.

EMENTA: Erros; diferenças finitas; métodos iterativos; interpolação e aproximação de funções; derivação e integração numéricas; resolução numérica de equações: algébricas; transcendentes e lineares; método de estimados quadrados; zeros de funções de uma ou mais variáveis; ajuste de funções; resolução numérica de equações diferenciais; utilização de softwares de análise numérica.

NÚCLEO DE FORMAÇÃO DCN: Básica

Disciplina:	PROGRAMAÇÃO DE COMPUTADORES I
Abreviação:	CMP1.9

CARGA HORÁRIA (horas-aul	a) CRÉDITOS	NATUREZA

Teórica	Prática	Total	2	Obrigatória
30	-	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
-	

- Conhecer os conceitos lógicos e computacionais que são essenciais para a ciência da computação, visando capacitá-lo a formular corretamente um problema computacional e a construir um algoritmo para sua resolução;
- Contribuir para o desenvolvimento do raciocínio lógico-matemático abstrato;
- Conhecer os sistemas numéricos e sua aritmética, noções de lógica e álgebra Booleana.

EMENTA: Sistemas numéricos: representação e aritmética nas bases: decimal, binária, octal e hexadecimal; introdução à lógica; álgebra e funções Booleanas; algoritmos estruturados: tipos de dados e variáveis, operadores aritméticos e expressões aritméticas; operadores lógicos e expressões lógicas; estruturas de controle; entrada e saída de dados; estruturas de dados; organização e manipulação de arquivos.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 01 – Matemática e Computação

Disciplina:	LABORATÓRIO PROGRAMAÇÃO DE COMPUTADORES I
Abreviação:	CMP1.10

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obrigatária
-	30	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
	CMP1.9

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer os conceitos lógicos e computacionais que são essenciais para a ciência da computação, visando capacitá-lo a formular corretamente um problema computacional e a construir um algoritmo para sua resolução;
- Contribuir para o desenvolvimento do raciocínio lógico-matemático abstrato;
- Conhecer os sistemas numéricos e sua aritmética, noções de lógica e álgebra Booleana.

EMENTA: Práticas em laboratório dos temas e tópicos abordados na disciplina "Programação de Computadores I" utilizando uma linguagem de programação.

NÚCLEO DE FORMAÇÃO DCN: Básica

Disciplina:	PROGRAMAÇÃO DE COMPUTADORES II
Abreviação:	CMP1.11

CARGA HORÁRIA	(horas-aula)	CRÉDITOS	NATUREZA

Teórica	Prática	Total	2	Obrigatória
30	-	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
CMP1.9; CMP1.10	-

- Conhecer e saber utilizar os conceitos de programação orientada a objetos;
- Projetar e implementar programas utilizando o paradigma de orientação a objetos.

EMENTA: Conceitos de orientação a objetos: tipos abstratos de dados, objetos, classes, métodos, visibilidade, escopo, encapsulamento, associações de classes, estruturas todo-parte e generalização-especialização, interfaces; herança de interface e de classe, polimorfismo, sobrecarga, invocação de métodos; aplicações em uma linguagem de programação orientada a objetos; noções de modelagem de sistemas usando UML: diagrama de classes e de interação.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 01 – Matemática e Computação

Disciplina:	LABORATÓRIO PROGRAMAÇÃO DE COMPUTADORES II
Abreviação:	CMP1.12

CARGA HORÁRIA (horas-aula)		CRÉDITOS	NATUREZA	
Teórica	Prática	Total 2 Obviocatóri		Obmicatómia
-	30	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
	CMP1.11

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer e saber utilizar os conceitos de programação orientada a objetos;
- Projetar e implementar programas utilizando o paradigma de orientação a objetos.

EMENTA: Práticas em laboratório dos temas e tópicos abordados na disciplina "Programação de Computadores II"

NÚCLEO DE FORMAÇÃO DCN: Básica

Disciplina:	TÓPICOS ESPECIAIS EM MATEMÁTICA E COMPUTAÇÃO
Abreviação:	OPT1.13

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	1 Ontative	
15	-	15	1	Optativa

PRÉ-REQUISITO	CO-REQUISITO

 Conhecer tópicos especiais de Matemática e Computação não contemplados nas disciplinas do eixo, ou ainda realizar um aprofundamento em tópicos que foram iniciados ao longo de disciplinas do eixo.

EMENTA: Cálculo, geometria analítica, álgebra vetorial, estatística, álgebra linear, métodos numéricos, programação de computadores.

Observação: Esta ementa contém mais tópicos do que efetivamente podem ser ministrados numa disciplina de 15 horas. O tópico escolhido a ser ministrado na referida disciplina, cada vez que ela for oferecida, será registrado no Plano de Ensino da mesma.

ÁREA DE FORMAÇÃO DCN: Específica

EIXO 02: FÍSICA E QUÍMICA				
			Carga h	orária
			Horas	Horas-aula
			262,5	315
Desdobramen	nto em disciplinas obrigatórias			
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 250	Horas-aula 300
QUI2.1	Química Básica	Básica	25	30
QUI2.2	Laboratório de Química Básica	Básica	25	30
FIS2.3	Física I	Básica	50	60
FIS2.4	Física II	Básica	50	60
FIS2.5	Física Experimental I	Básica	25	30
FIS2.6	Física III	Básica	50	60
FIS2.7	Física Experimental II	Básica	25	30
Desdobramento em disciplinas optativas				
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 12,5	Horas-aula 15
OPT2.8	Tópicos Especiais em Química e Física	Específica	12,5	15

Disciplina:	QUÍMICA BÁSICA
Abreviação:	QUI2.1

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2 Obnicatário	
30	-	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
-	-

- Observar, analisar e descrever fenômenos químicos;
- Interpretar os resultados de análises químicas;
- Adquirir conhecimentos para permitir o bom desempenho de disciplinas correlatas;
- Adquirir base científica para a compreensão de aplicação dos conhecimentos de química na engenharia;
- Correlacionar fenômenos microscópicos com fenômenos macroscópicos.

EMENTA: Estrutura eletrônica dos átomos; ligação química; soluções; equações químicas, cálculos estequiométricos, ácidos e bases; cinética química e equilíbrio; equilíbrio iônico; eletroquímica.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 02 – Física e Química

Disciplina:	LABORATÓRIO DE QUÍMICA BÁSICA
Abreviação:	QUI2.2

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2 Obrigatária	
-	30	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
-	QUI2.1

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Realizar e analisar experimentos no laboratório;
- Interpretar resultados obtidos no laboratório;
- Relacionar os resultados práticos e o conteúdo teórico correspondente;
- Adquirir conhecimentos para o bom desenvolvimento de disciplinas correlatas;
- Adquirir conhecimentos que possam ser aplicados na Engenharia.
- EMENTA: Práticas em laboratório dos temas e tópicos abordados na disciplina de "Química Básica".

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 02 – Física e Química

Disciplina:	FÍSICA I
Abreviação:	FIS2.3

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	4 Obrigatária	
60	-	60	4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MAT1.1	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer os princípios básicos da Mecânica;
- Aplicar os princípios básicos da Mecânica a situações do cotidiano do profissional;
- Utilizar os princípios da Mecânica na análise de sistemas de interesse da Engenharia.

EMENTA: Introdução; velocidade e acelerações vetoriais; princípios da dinâmica; aplicações das leis de Newton; trabalho e energia mecânica; conservação de energia; momento linear e conservação do momento linear; momento angular e conservação do momento angular; dinâmica dos corpos rígidos; gravitação.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 02 – Física e Química

Disciplina:	FÍSICA II
Abreviação:	FIS2.4

CARGA HORÁ	RIA (horas-aula)	CRÉDITOS	NATUREZA	
Teórica	Prática	Total	4	Obmicatánia
60	-	60] 4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
FIS2.3; MAT1.2	-

- Conhecer as equações de Maxwell na formulação integral;
- Resolver problemas elementares envolvendo campos elétricos e/ou campos magnéticos;
- Compreender o funcionamento de dispositivos elétricos e eletrônicos por meio das leis fundamentais do eletromagnetismo.

EMENTA: Carga elétrica e matéria; lei de Coulomb; o campo elétrico; fluxo elétrico lei de Gauss; potencial elétrico; capacitores e dielétricos; corrente elétrica; resistência elétrica; força eletromotriz; circuitos de corrente contínua; campo magnético; lei de Ampére; indução eletromagnética; lei de Faraday; ondas eletromagnéticas; lei de Lenz; indutância e energia do campo magnético; circuitos de corrente alternada.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 02 – Física e Química

Disciplina:	FÍSICA EXPERIMENTAL I				
Abreviação:	FIS2.5				
CARGA HOR	CARGA HORÁRIA (horas-aula) CRÉDITOS NATUREZA				
Teórica	Prática	Total	:	2	Obnicatónia
-	30	30		2	Obrigatória
PRÉ-REQUISITO			CO-REQU	JISITO	
-			FIS2.4		

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Aplicar os conceitos básicos associados aos princípios da Mecânica e do Eletromagnetismo a situações cotidianas do profissional;
- Desenvolver habilidades e técnicas para resolução de problemas práticos;
- Demonstrar domínio dos princípios e leis físicas associadas a fenômenos e sistemas de interesse das respectivas áreas do conhecimento;
- Compreender as leis e os princípios físicos que formam a base indispensável para o desenvolvimento tecnológico e científico;
- Elaborar relatório técnico-científico segundo a metodologia da Física experimental;
- Desenvolver trabalho em equipe;
- Interpretar e elaborar textos técnicos e científicos;
- Elaborar e interpretar gráficos e diagramas;
- Usar corretamente as unidades do SI nas medidas das grandezas físicas;

- Coletar dados utilizando aparelhos analógicos e digitais, de modo manual ou automatizado;
- Utilizar aplicativos gráficos para o tratamento estatístico de dados;
- Calcular erros em medidas diretas e indiretas;
- Avaliar a precisão e exatidão das medidas realizadas;
- Avaliar qualitativamente e quantitativamente os dados experimentais, com reflexão crítica acerca dos resultados obtidos.

EMENTA: Práticas em laboratório dos temas e tópicos abordados nas disciplinas de física, mais especificamente, experimentos nas áreas de mecânica, eletricidade, magnetismo, circuitos elétricos e eletromagnetismo.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 02 – Física e Química

Disciplina:	FÍSICA III
Abreviação:	FIS2.6

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática	Total	al Obrigatária		
60	-	60	4	Obrigatória	

PRÉ-REQUISITO	CO-REQUISITO
FIS2.4	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer os princípios da Física fundamentais para os cursos de Engenharia;
- Analisar os fenômenos físicos em geral;
- Aplicar as leis e princípios da Física na solução de problemas;
- Elaborar e interpretar gráficos e diagramas;
- Equacionar e resolver problemas.

EMENTA: Temperatura; calor; 1ª e 2ª leis da termodinâmica; propriedade dos gases; teoria cinética dos gases; transferência de calor e massa; estática e dinâmica dos fluidos; oscilações; ondas e movimentos ondulatórios; luz; natureza e propagação da luz; reflexão e refração; interferência, difração e polarização da luz; efeito fotoelétrico; efeito Compton.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 02 – Física e Química

Disciplina:	FÍSICA EXPERIMENTAL II
Abreviação:	FIS2.7

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2 Obnicatária	
-	30	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO

FIS2.5	FIS2.6

- Aplicar os conceitos básicos associados aos princípios da Termodinâmica, Oscilações, Ondas e Ótica a situações cotidianas do profissional;
- Desenvolver habilidades e técnicas para resolução de problemas práticos;
- Demonstrar domínio dos princípios e leis físicas associadas a fenômenos e sistemas de interesse das respectivas áreas do conhecimento;
- Compreender as leis e os princípios físicos que formam a base indispensável para o desenvolvimento tecnológico e científico;
- Elaborar relatório técnico-científico segundo a metodologia da Física experimental;
- Desenvolver trabalho em equipe;
- Interpretar e elaborar textos técnicos e científicos;
- Elaborar e interpretar gráficos e diagramas;
- Usar corretamente as unidades do SI nas medidas das grandezas físicas;
- Coletar dados utilizando aparelhos analógicos e digitais, de modo manual ou automatizado;
- Utilizar aplicativos gráficos para o tratamento estatístico de dados;
- Calcular erros em medidas diretas e indiretas;
- Avaliar a precisão e exatidão das medidas realizadas;
- Avaliar qualitativamente e quantitativamente os dados experimentais, com reflexão crítica acerca dos resultados obtidos.

EMENTA: Práticas em laboratório dos temas e tópicos abordados nas disciplinas de física, mais especificamente, experimentos nas áreas de termodinâmica, oscilações e ondas, ótica.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 02 – Física e Química

Disciplina:	TÓPICOS ESPECIAIS EM QUÍMICA E FÍSICA
Abreviação:	OPT2.8

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	1	Ontotivo
15	-	15	1	Optativa

PRÉ-REQUISITO	CO-REQUISITO
-	-

OBJETIVOS: Estudar tópicos especiais de Química e Física não contemplados nas disciplinas do eixo, ou ainda realizar um aprofundamento em tópicos que foram iniciados ao longo de disciplinas do eixo.

EMENTA: Ouímica, Física.

Observação: Esta ementa contém mais tópicos do que efetivamente podem ser ministrados numa disciplina de 15 horas. O tópico escolhido a ser ministrado na referida disciplina, cada vez que ela for oferecida, será registrado no Plano de Ensino da mesma.

ÁREA DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 02 – Física e Química

	EIXO 03: CIÊNCIAS HUMANAS, SOCIAIS E GERENCIAIS				
			Carga h	orária total	
			Horas	Horas-aula	
			387,5	465	
Desdobramer	nto em disciplinas obrigatórias				
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 312,5	Horas-aula 375	
CHS3.1	Contexto Social e Profissional do Engenheiro de Automação Industrial	Específica	25	30	
CHS3.2	Introdução à Prática Experimental	Básica	12,5	15	
CHS3.3	Filosofia da Tecnologia	Básica	25	30	
CHS3.4	Introdução à Sociologia	Básica	25	30	
CHS3.5	Psicologia Aplicada às Organizações	Básica	25	30	
GER3.6	Gestão de Recursos Humanos	Básica	25	30	
GER3.7	Gestão Ambiental	Básica	25	30	
GER3.8	Normalização e Qualidade Industrial	Profissionalizante	25	30	
GER3.9	Introdução à Engenharia de Segurança	Profissionalizante	25	30	
GER3.10	Introdução ao Direito	Profissionalizante	25	30	
GER3.11	Introdução à Economia	Básica	25	30	
GER3.12	Introdução à Administração	Básica	25	30	
GER3.13	Pesquisa Operacional	Profissionalizante	25	30	
Desdobramer	to em disciplinas optativas				
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 75	Horas-aula 90	
OPT3.14	Libras I	Básica	25	30	
OPT3.15	Libras II	Básica	25	30	
OPT3.16	Tópicos Especiais em Ciências Humanas, Sociais e Gerenciais	Específica	25	30	

Dissiplina	CONTEXTO SOCIAL E PROFISSIONAL DO ENGENHARIA DE
Disciplina:	AUTOMAÇÃO INDUSTRIAL
Abreviação:	CHS3.1

CARGA HORÁRIA (horas-aula)		CRÉDITOS	NATUREZA		
Teórica	Prática	Total		2	Obrigatória
30	-	30			
PRÉ-REQUISITO		CO-REQ	UISITO		
-		-			

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer a profissão do engenheiro de automação industrial e suas implicações éticas e sociais;
- Conhecer as relações entre ciência, tecnologia e sociedade / o papel da tecnologia no desenvolvimento humano;
- Conhecer a importância do projeto no trabalho do engenheiro;
- Conhecer as ferramentas de trabalho típicas da Engenharia: modelos, simulações e otimizações;
- Conhecer conceitos básicos da Engenharia de Automação Industrial: representações, sistemas em diagramas de blocos, diagramas P&I e malhas de controle.

EMENTA: O Curso de Engenharia de Automação Industrial e o espaço de atuação do engenheiro de Automação Industrial; cenários da Engenharia de Automação Industrial no Brasil e no mundo; conceituação e áreas da Engenharia de Automação industrial; o sistema profissional da Engenharia de Automação Industrial: regulamentos, normas e ética profissional; desenvolvimento tecnológico e o processo de estudo e de pesquisa; interação com outros ramos da área tecnológica; mercado de trabalho; ética e cidadania.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais

Disciplina:	INTRODUÇÃO À PRÁTICA EXPERIMENTAL
Abreviação:	CHS3.2

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática Total		1	Obnicatánia
15	-	15	1	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
-	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer os laboratórios de experimentação da engenharia de automação industrial;
- Desenvolver habilidades para projetos de automação industrial;
- Orientar possíveis protótipos em automação industrial.

EMENTA: Introdução à experimentação e ao desenvolvimento de protótipos e projetos na engenharia.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais

Disciplina:	FILOSOFIA DA TECNOLOGIA
Abreviação:	CHS3.3

CARGA HORÁRIA (horas-aula)	CRÉDITOS	NATUREZA
----------------------------	----------	----------

Teórica	Prática	Total	2	Obrigatória
30	-	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
1250 ha	-

Aquisição de instrumentos teóricos que permitam uma análise rigorosa dos problemas que envolvem a relação entre a história, a cultura contemporânea e o uso da técnica.

EMENTA: Filosofia da ciência e da tecnologia: história da ciência e da tecnologia; epistemologia da tecnologia; avaliação das questões tecnológicas no mundo contemporâneo; tecnologia e paradigmas emergentes.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais

Disciplina:	INTRODUÇÃO À SOCIOLOGIA
Abreviação:	CHS3.4

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total 2 Obs		Obnicatánia
30	-	30	\ \(\times \)	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
1250 ha	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Entender o homem como ser social, por meio da transmissão de instrumentos para análise dos grupos e da sociedade;
- Conhecer e conceituar os componentes básicos da sociologia como ciência e identificar seus caracteres distintivos no contexto das demais ciências;
- Analisar as relações entre homem, natureza e trabalho como forma de compreender criticamente a produção científica, técnica e tecnológica;
- Compreender a si mesmo como protagonista de processos sociais que orientam a dinâmica do conflito dos interesses dos diferentes grupos sociais;
- Compreender o papel sociopolítico das instituições de poder e dominação;
- Compreender os aspectos sociológicos da estrutura produtiva, dos processos do trabalho e das relações étnico raciais.

EMENTA: Sociologia como estudo da realidade social; Relações Sociais; Trabalho, Sociedade e Capitalismo; Neoliberalismo; Ciência, Técnica e Tecnologia; Trabalho na Sociedade Brasileira; Trabalho e Relações Étnico-raciais e cultura afro-brasileira; diversidade sexual, relações de gênero, pessoas com deficiências.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais.

Disciplina:	PSICOLOGIA APLICADA ÀS ORGANIZAÇÕES
-------------	-------------------------------------

Abreviação:	CHS3.5
-------------	--------

CARGA HORÁRIA (horas-aula)		CRÉDITOS	NATUREZA		
Teórica	Prática	Total		2	Obmicatómia
30	-	30		2	Obrigatória
PRÉ-REQUISITO		CO-REQ	UISITO		
1250 ha		-			

Vivenciar a realidade profissional e familiarização com o futuro ambiente de trabalho e de negócios.

EMENTA: Psicologia do Trabalho nas Organizações: história e significados do trabalho; os significados do trabalho dentro do sistema capitalista; o trabalho na sociedade contemporânea; saúde mental, trabalho e adoecimento; assédio moral; o papel do sujeito nas organizações, poder nas organizações, estilos gerenciais e liderança, cultura organizacional, recursos humanos nos cenários organizacionais, relações humanas e habilidades interpessoais. Diversidade no mundo do trabalho: relações étnico-raciais e cultura afro-brasileira e cultura indígena; diversidade sexual, relações de gênero, pessoas com deficiências.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais

Disciplina:	GESTÃO DE RECURSOS HUMANOS
Abreviação:	GER3.6

CARGA HORÁ	RIA (horas-aula)		CRÉDITOS	NATUREZA
Teórica	Prática	Total	otal 2 Obrigatá	
30	-	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
2500 ha	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer conceitos básicos e do cotidiano sobre a CLT Consolidação da Leis do Trabalho;
- Conhecer os princípios das escolas das relações humanas e entender a interação entre RH e as diversas áreas de uma organização e os seus subsistemas;
- Revisar aspectos cotidianos sobre os direitos do consumidor no Brasil;
- Discutir sobre as práticas de gestão em RH em contratação de pessoal, treinamento, plano de cargos e salários, planos de benefícios, relação sindical etc., por meio de apresentação de seminários usando como base artigos relacionados ao tema.

EMENTA: Legislação Trabalhista: CLT – Consolidação das Leis do Trabalho, Constituição da República Federativa do Brasil; folha de pagamento; relações humanas no trabalho; recrutamento, seleção e treinamento de pessoal; estilos, gerência e liderança; Abreviação de Defesa do Consumidor.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 - Ciências Humanas, Sociais e Gerenciais

Disciplina:	a: GESTÃO AMBIENTAL				
Abreviação:	GER3.7				
CARGA HORÁRIA (horas-aula) CRÉDITOS NATUREZA				NATUREZA	
Teórica	Prática	Total		2	Obrigatária
30	-	30		\(\alpha\)	Obrigatória
PRÉ-REQUISITO			CO-REQUISITO		
1500 ha		-			

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Obter noções de ecologia, dos ciclos biogeoquímicos, dos recursos naturais e de gestão ambiental, e sobre Meio Ambiente;
- Desenvolver uma consciência ambiental e ecológica, de forma que a questão ambiental esteja presente nas intervenções que o futuro engenheiro realizará no meio ambiente.

EMENTA: Fundamentos de Ecologia; Ecossistema: Estrutura e Funcionamento; Impactos das Atividades Antrópicas sobre os Ciclos Ecológicos; Poluição das águas, do ar e do solo; Estudos de Impacto Ambiental; Sistema de Gestão Ambiental (A norma ISO 14001).

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais

Disciplina:	NORMALIZAÇÃO E QUALIDADE INDUSTRIAL
Abreviação:	GER3.8

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obnicatánia
30	-	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MAT1.6;1250 ha	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Compreender e difundir a Normalização Técnica e seus benefícios;
- Elaborar normas técnicas e especificações técnicas;
- Dominar os conceitos básicos, metodologia e técnicas de controle estatístico do processo;
- Emitir parecer técnico de aceitação ou rejeição e equipamentos.

EMENTA: Normalização: fundamentos e conceitos; normalização a nível nacional, internacional e empresarial; elaboração de normas técnicas e especificações; aspectos básicos da qualidade industrial; controle estatístico de processo; gráficos e cartas de controle; normas básicas para planos de amostragem e guias de utilização.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais.

Disciplina:	INTRODUÇÃO À ENGENHARIA DE SEGURANÇA

Abreviação:	GER3
-------------	------

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obnicatánia
30	-	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
1750 ha	-

- Adquirir conceituação básica relacionada à segurança do trabalho e ambiente de trabalho;
- Adquirir noções básicas sobre organização no trabalho.
- Entender sobre os tópicos tratados: Acidente de trabalho (conceituação legal e prevencionista), NR's (lei nº 6.514 de 22 de dezembro de 1977);
- Conhecer e analisar criticamente as condições de segurança de uma empresa.

EMENTA: Estatística dos acidentes; causas e custos dos acidentes; aspectos sociais e econômicos dos acidentes; CIPA, SEESMT; acidente elétrico; prevenção e combates de incêndios; equipamentos de proteção individual; agentes físicos, químicos e biológicos; fundamentos da higiene do trabalho; acidentes de trânsitos e na construção civil; doenças ocupacionais; noções de toxicologia industrial; ergonomia na prevenção de acidentes; as cores na engenharia de segurança; primeiros socorros.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais

Disciplina:	INTRODUÇÃO AO DIREITO
Abreviação:	GER3.10

(CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
-	Teórica	Prática	Total	2 Obrigatária	
3	30	-	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
2750 ha	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

Entender o funcionamento das regras jurídicas, seu fundamento e sua estrutura, bem como sua importância no mundo pós-moderno, como reguladoras das condutas dos membros de uma sociedade, procurando despertar-lhe o interesse em relação ao tratamento dispensado pela Constituição Federal e pelas demais leis às diversas situações da vida do cidadão e da empresa.

EMENTA: Sistema constitucional brasileiro; noções básicas de direito civil, comercial, administrativo, trabalho e tributário; aspectos relevantes em contratos; regulamentação profissional; fundamentos da propriedade industrial e intelectual.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante. EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais.

Disciplina:	INTRODUÇÃO À ECONOMIA
Abreviação:	GER3.11

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica Prática Total		2	Obrigatária	
30	-	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
2750 ha	-

- Ter noções de economia moderna;
- Conhecer os conceitos básicos de Microeconomia e Macroeconomia;
- Conhecer os aspectos econômicos envolvidos na produção, como por exemplo, custos de produção;
- Saber quais as principais variáveis econômicas e seu papel na vida do engenheiro;
- Saber como se faz a mensuração do Produto Nacional;
- Entender as tomadas de decisões de consumidores e firmas.

EMENTA: Introdução: natureza e método da economia; microeconomia: fatores de produção, mercados, formação de preços, consumo; macroeconomia: o sistema econômico, relações intersetoriais, consumo, poupança, investimento, produto e renda nacional, circulação no sistema econômico, setor público, relações com o exterior; introdução à engenharia econômica: custos de produção.

NÚCLEO DE FORMAÇÃO DCN: Básica.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais.

Disciplina:	INTRODUÇÃO À ADMINISTRAÇÃO				
Abreviação:	GER3.12				
CARGA HOR	CARGA HORÁRIA (horas-aula) CRÉDITOS NATUREZA				
Teórica	Prática	Total		2	Obrigatária
30	-	30		2	Obrigatória
PRÉ-REQUISITO		CO-REQU	JISITO		
700 ha		-	_		

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

Compreender as questões científicas que permeiam os estudos da administração e as aplicações dos conhecimentos construídos nas teorias administrativas.

EMENTA: Introdução à administração; escolas e contribuições à teoria geral da administração; funções básicas da administração de recursos humanos; administração de suprimentos; administração financeira: uma abordagem na empresa moderna.

NÚCLEO DE FORMAÇÃO DCN: Básica.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais.

Disciplina:	PESQUISA OPERACIONAL
Abreviação:	GER3.13

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	órica Prática Total		2	Obmicatánia
30	-	30	\ \(\times \)	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MAT1.7; 1750 ha	-

- Caracterizar problemas de decisão e de otimização linear;
- Representar tais problemas matematicamente e graficamente;
- Aplicar algoritmos para obtenção de soluções;
- Analisar as soluções obtidas.

EMENTA: Formulação de Modelos. Programação Linear. Método Simplex. Problemas de Transporte. Programação Inteira. Modelos de Rede. Simulação. Teoria da Decisão. Teoria dos Jogos. Análise de Demandas por Produtos.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais.

Disciplina:	LIBRAS I
Abreviação:	OPT3.14

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Teórica Prática Total		2	Ontotisso
30	-	30	2	Optativa

PRÉ-REQUISITO	CO-REQUISITO
-	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Identificar características das línguas de modalidade gestual visual, em específico, a
- LIBRAS Língua Brasileira de Sinais;
- Conhecer a história das comunidades surdas e suas manifestações culturais;
- Conhecer a história da língua brasileira de sinais no Brasil;
- Conhecer o processo de emancipação social da comunidade surda;
- Conhecer aspectos básicos da estrutura da língua brasileira de sinais desdobrando-os nas características morfológicas da língua, por exemplo, os parâmetros constituintes da LIBRAS;
- Iniciar uma conversação básica através da língua de sinais com pessoas surdas.

EMENTA: Apresentação e discussão acerca dos aspectos idenitários, sociais e culturais da comunidade surda, bem como dos aspectos linguísticos das línguas de sinais, em específico a LIBRAS – Língua Brasileira de Sinais.

NÚCLEO DE FORMAÇÃO DCN: Básica.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais.

Disciplina:	LIBRAS II
Abreviação:	OPT3.15

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total 2 Ontations		Ontotivo
30	-	30	2	Optativa

PRÉ-REQUISITO	CO-REQUISITO
-	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

Obter conhecimento do léxico e da sintaxe da LIBRAS;

Empreender uma comunicação básica com pessoas surdas usuárias da LIBRAS.

EMENTA: Ensino da LIBRAS; Teoria linguística e prática conversacional em LIBRAS.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais

Disciplina:	TÓPICOS ESPECIAIS EM CIÊNCIAS HUMANAS, SOCIAIS E GERENCIAIS
Abreviação:	OPT3.16

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática	Total		2	Optativa
30	-	30			
PRÉ-REQUISITO		CO-REQUISITO			
-		-			

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

Estudar tópicos especiais de Ciências Humanas, Sociais e Gerenciais não contemplados nas disciplinas do eixo, ou ainda realizar um aprofundamento em tópicos que foram iniciados ao longo de disciplinas do eixo.

EMENTA: Prática experimental, sociologia, psicologia, recursos humanos, ciências ambientais, normalização e qualidade industrial, engenharia de segurança, direito e legislação, economia, administração e pesquisa operacional.

Observação: Esta ementa contém mais tópicos do que efetivamente podem ser ministrados numa disciplina de 30 horas. O tópico escolhido a ser ministrado na referida disciplina, cada vez que ela for oferecida será registrado no Plano de Ensino da mesma.

ÁREA DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 03 – Ciências Humanas, Sociais e Gerenciais

EIXO 04: FUNDAMENTOS DE ENGENHARIA							
			Carga h	orária			
			horas	horas-aula			
			350	420			
Desdobramer	nto em disciplinas obrigatórias						
Abreviação	Nome da disciplina	Classificação pelas DCN	horas 325	horas-aula 390			
DES4.1	Desenho Técnico	Básica	50	60			
DES4.2	Projeto Técnico I	Básica	25	30			
DES4.3	Projeto Técnico II	Básica	50	60			
ENG4.4	Ciências dos Materiais	Profissionali- zante	25	30			
ENG4.5	Resistência dos Materiais	Profissionalizante	50	60			
ENG4.6	Planejamento e Controle da Produção	Profissionali- zante	25	30			
ENG4.7	Fundamentos da Termodinâmica e Transferência de Calor	Profissionalizante	50	60			
ENG4.8	Mecânica dos Fluidos	Profissionali- zante	25	30			
ENG4.9	Manutenção Industrial	Específica	25	30			
Desdobramer	Desdobramento em disciplinas optativas						
Abreviação Nome da disciplina		Classificação pelas DCN	Horas 25	Horas-aula 30			
OPT4.10	Tópicos Especiais em Engenharia	Específica	25	30			

Disciplina:	DESENHO TÉCNICO
Abreviação:	DES4.1

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	4	Obmigatómia
-	60	60	4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
-	-

Entender e interpretar a linguagem da expressão gráfica e para a leitura e execução de
Desenhos Técnicos, com seus respectivos simbolismos e especificações, dentro das Normas e
Convenções do Desenho Técnico, para que esses conhecimentos possam ser aplicados
adequadamente nas áreas profissionais afins;

- Conscientizar-se da importância do Desenho Técnico como linguagem gráfica universal, indispensável na transmissão de formas físicas e informações técnicas para o mundo industrial.
- Trabalhar a visualização tridimensional, o conhecimento das convenções universais do desenho técnico e a representação de esboços para comunicação de ideias e solução de problemas.

EMENTA: Representação de forma e dimensão. Convenções e normalização. Uso de instrumentos de desenho. Normas de desenho técnico. Tipos de desenho, papéis e linhas utilizadas. Caligrafia técnica. Escalas. Perspectivas- Desenho exato/croquis. Desenho projetivo - Desenho exato/croquis. Contagem. Utilização de elementos gráficos na interpretação e solução de problemas. Supressão de vistas. Vistas auxiliares. Vistas auxiliares simplificadas. Cortes - total, meio corte, corte rebatido. Omissão de corte, corte parcial. Secções - sobre a vista, fora de vista. Vista parcial em corte. Rupturas/hachuras. Representações convencionais. Noções de conjunto. Emprego e aplicação de recursos computacionais em desenho técnico e de engenharia.

NÚCLEO DE FORMAÇÃO DCN: Básica. EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 04 – Fundamentos de Engenharia.

Disciplina:	PROJETO TÉCNICO I
Abreviação:	DES4.2

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obnicatánia
30	-	30	Δ	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
DES4.1	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Acrescentar conhecimentos adquiridos na disciplina de Desenho Técnico;
- Desenvolver as aplicações digitais de sistemas CAx: CAD/ CAE/CAM;
- Elaborar desenhos em CAx para aplicações em engenharia de automação.

EMENTA: Introdução aos Sistemas CAx: CAD/ CAE/ CAM. Técnicas de representação geométrica, Formas e Produtos complexos; Sistemas CAD: Classificação, Modelamento, Critérios, Ferramentas, Perspectivas, Representações 2D e 3D, Limitações geométricas; Autocad: Introdução, visualização, comandos, coordenadas, Ferramentas auxiliares: osnap, auto, construção, edição, Padrões das NBRs: 8403/8402/10068/10582/13142/8196/10126/10647/13272/13273, Projetos eletro/mecânicos e configuração de Impressão.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 04 – Fundamentos de Engenharia

Disciplina:	PROJETO TÉCNICO II
Abreviação:	DES4.3

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática	Total		2	Obrigatória
-	30	30		2	
PRÉ-REQUISITO		CO-REQ	UISITO		
DES4.2; MCC11.5		-			

- Acrescentar conhecimentos adquiridos na disciplina de Projeto técnico I;
- Desenvolver documentos digitais em DOC, TXT, Excel e Curva "S";
- Conhecer documentos para projetos básicos, detalhados e executivos;
- Elaborar documentos classificados para projetos em automação industrial.

EMENTA: Projeto conceitual: Plano geral, Memoriais Descritivo de Processos, Coordenações disciplinares (Civil/ Mecânica/ Elétrica/ Eletrônica/ Automação); Projeto básico: Processos Eletro-Mecânico e Instrumentação, Plano infra-estrutural, Critérios de projetos disciplinares, Locação de Equipamentos e Instrumentos, Rotas de cabeamentos, Diagramas Mecânicos/ Eletrônicos/ Instrumentação, Especificações e Folhas de dados, Requisições técnicas, Análises de fornecedores; Projeto Executivo: Detalhamentos Mecânicos/ Elétricos/ Automação, Memoriais de cálculos, Plantas de locação e cabeamentos, Detalhes típicos de instalações, Diagramas de interligação e malhas, comissionamento de starup: Fiscalização/Diário de obras, Levantamento de pendências, Testes a frio e quente, Partida de equipamentos, Rotinas de produção, Aprovação operacional e qualitativa.

NÚCLOE DE FORMAÇÃO DCN: Básica EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 04 – Fundamentos de Engenharia

Disciplina:	CIÊNCIAS DOS MATERIAIS
Abreviação:	ENG4.4

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática	Total	1	2	Obrigatária
30	-	30			Obrigatória
PRÉ-REQUISITO		CO-REQ	UISITO		
QUI2.1		-	_		

- Conhecer as propriedades mecânicas, elétricas, magnéticas e tecnológicas dos materiais;
- Compreender a natureza dos materiais e estrutura dos sólidos;
- Compreender os princípios físicos e químicos da constituição dos materiais;
- Classificar os materiais utilizados em aplicações elétricas segundo suas propriedades: térmicas, magnéticas, óticas e acústicas;
- Distinguir os diversos materiais utilizados em equipamentos e componentes elétricos e magnéticos;
- Estabelecer relações claras entre propriedades dos materiais, métodos de fabricação e seu efeito sobre o funcionamento de dispositivos eletroeletrônicos.

EMENTA: Níveis de energia e bandas de energia nos sólidos; modelo atômico; estrutura dos materiais; ligação química e estrutura atômica; comportamento físico do material; formação das estruturas de arranjo cristalino nos sólidos; ensaios destrutivos e não destrutivos; processos básicos de obtenção de materiais: solidificação, sintetização, polimerização; comportamento dos materiais sob campo elétrico: condutores, semicondutores, supercondutores e dielétricos; comportamento dos materiais sob campo magnético; propriedades óticas dos materiais.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 04 – Fundamentos de Engenharia.

Disciplina:	RESISTÊNCIA DOS MATERIAIS
Abreviação:	ENG4.5

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obnicatánia
30	-	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MEC5.2; ENG4.4	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Desenvolver a capacidade de análise dos problemas de engenharia em geral;
- Desenvolver a capacidade de análise de problemas em relação aos projetos de estruturas e componentes mecânicos;
- Aplicar, de maneira racional e lógica, os conceitos básicos, no uso de modelos simplificados.

EMENTA: Introdução à resistência dos materiais. Tensões e deformações nos sólidos. Tração e compressão. Cisalhamento. Flexão simples. Deformação nas vigas sujeitas a flexão. Linha elástica. Torção. Flambagem. Análise das juntas e ligações excêntricas soldadas e parafusadas. Reservatórios cilíndricos, esféricos e tubos de paredes finas.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 04 – Fundamentos de Engenharia

Disciplina:	PLANEJAMENTO E CONTROLE DA PRODUÇÃO
Abreviação:	ENG4.6

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obmicatánia
30	-	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MEC5.3	-

- Compreender o que é Administração da Produção e Operações;
- Compreender o papel estratégico, bem como os objetivos da produção;

- Entender os tipos de Arranjos Físicos e de Fluxos da Produção;
- Conhecer os principais conceitos e fundamentos do Planejamento, da Programação e do Controle da Produção e Operações;
- Compreender o que se entende por Teoria das Restrições;
- Entender como efetuar o Planejamento, a Predição, a Projeção e a Previsão de Vendas (Demanda);
- Compreender o que significa demanda de acordo com a dimensão econômica;
- Entender os métodos de Previsão e Estimativa Quantitativa relativa à demanda;
- Conhecer como é feita a adequação com a capacidade operacional via S&OP Sales and Operation Planning;
- Entender a definição de dimensão econômica e o ponto de equilíbrio;
- Compreender a adequação com a capacidade Operacional (Planejamento Agregado);
- Entender a mecânica do S&OP Sales and Operation Planning;
- Compreender o conceito de Planejamento e Controle de Estoque;
- Entender o que é estoque, o dimensionamento de volume e o ressuprimento;
- Aprender a calcular o LEC Lote Econômico de Compra e esboçar a curva ABC;
- Entender a evolução do BOM, MRP, MRPII até os dias atuais com os sistemas ERPI e ERPII;
- Compreender o sistema de controle MRP e sua operacionalização;
- Entender o fluxograma e projeto de produto e de serviços;
- Compreender a definição de Manufatura Enxuta e o Just In Time;
- Entender o Planejamento e Controle de Projetos;
- Elaborar a programação de atividades de obras com utilização de ferramentas PERT-CPM.

EMENTA: Introdução à Administração de Produção/ Operações. Papel Estratégico e os Objetivos da Produção. Arranjo Físico e Fluxo. Conceitos e Fundamentos do Planejamento, da Programação e do Controle da Produção/ Operações. Teoria das Restrições. Previsão da Demanda. Adequação com a capacidade operacional. Sistemas MRP/MRPII e o S&OP (Sales And Operation Planning). Planejamento e Controle de Estoque. Lote Econômico e a Classificação ABC. Manufatura Enxuta e o Just In Time. Planejamento e Controle de Projetos.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 04 – Fundamentos de Engenharia

Disciplina:	FUNDAMENTOS DE TERMODINÂMICA E TRANSMISSÃO DE CALOR
Abreviação:	ENG4.7

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	4	Obnicatánia
60	-	60	7 4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
FIS2.6; MAT1.3	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

• Ter uma visão clara dos fundamentos de termodinâmica e transferência de calor relativos aos sistemas e processos aplicados na Engenharia de Automação Industrial;

- Conhecer e identificar os ciclos motores e de refrigeração aplicados aos sistemas térmicos, bem como utilizar as propriedades termodinâmicas das substâncias puras para elaborar cálculos correlatos à produção e o uso da energia térmica;
- Conhecer as misturas que envolvem o ar através da psicrometria;
- Conhecer os fundamentos de transferência de calor por condução, convecção e radiação;
- Aplicar os conhecimentos em transferência de calor na análise de projetos de trocadores de calor.

EMENTA: Propriedades das substâncias puras; Trabalho e calor; Processos termodinâmicos; Primeira Lei da Termodinâmica; Segunda Lei da Termodinâmica; Entropia; Ciclos de potência e de Refrigeração; Estudo dos gases ideais e psicrometria; Fundamentos de transferência de calor por condução, convecção e radiação; Trocadores de calor.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 04 – Fundamentos de Engenharia

Disciplina:	MECÂNICA DOS FLUIDOS
Abreviação:	ENG4.8

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática	Total		2	Obrigatária
30	-	30			Obrigatória
PRÉ-REQUISITO		CO-REQ	UISITO		
FIS2.6, MAT1.3		-			

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Ter uma visão clara dos fundamentos de mecânica dos fluidos relativos aos escoamentos internos e externos de fluidos e suas respectivas aplicações na Engenharia de Automação Industrial;
- Aplicar as leis básicas de conservação e balanço em um volume de controle utilizando as formulações integral e diferencial;
- Avaliar a importância da análise dimensional e semelhança em escoamentos e máquinas de fluxo;
- Conhecer e especificar instalações de bombeamento hidráulico;
- Ter conhecimento das técnicas de medição de vazão.

EMENTA: Propriedades dos fluidos; Estática dos fluidos, Formulações integral e diferencial para volume de controle; Números adimensionais; Escoamentos interno e externo incompressíveis; Medição da vazão em escoamentos; Instalações de bombeamento; Teoria básica da camada limite.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 04 – Fundamentos de Engenharia

Disciplina:	MANUTENÇÃO INDUSTRIAL
Abreviação:	ENG4.9

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática Total		2	Obrigatária	
30	-	30		\(\alpha\)	Obrigatória
PRÉ-REQUISITO		CO-REQ	UISITO		
2350 ha		-	_		

- Conhecer a evolução da manutenção industrial e sua importância;
- Distinguir os vários tipos de manutenção e suas aplicações nos seguimentos da indústria;
- Caracterizar os avanços tecnológicos utilizados nas variadas técnicas de manutenção industrial;
- Identificar as ferramentas computacionais para planejamento e controle da manutenção;
- Destacar a importância da observância de normas de higiene e segurança no ambiente industrial e nas realizações das manutenções nos equipamentos;
- Destacar a importância da qualificação de mão de obra em todos os segmentos da manutenção.
- EMENTA: Conceito geral de manutenção. Histórico da manutenção. Tipos de manutenção.
 Paradas de Manutenção; Segurança na Manutenção de Equipamentos Industriais; Gestão
 Estratégica da Manutenção (planejamento e organização da manutenção); Gestão de Ativos;
 Terceirização; Qualificação; Técnicas Preditivas.

NÚCLEO DE FORMAÇÃO DCN: Específica.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 04 – Fundamentos de Engenharia.

Disciplina:	TÓPICOS ESPECIAIS EM ENGENHARIA
Abreviação:	OPT4.10

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica Prática Total		2	Ontotivo	
30	-	30	2	Optativa

PRÉ-REQUISITO	CO-REQUISITO
-	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

Estudar tópicos especiais de Engenharia não contemplados nas disciplinas do eixo, ou ainda, realizar um aprofundamento em tópicos que foram iniciados ao longo de disciplinas do eixo.

EMENTA: Desenho e projeto, materiais, planejamento e controle da produção, termodinâmica e transferência de calor, fluidos, manutenção.

Observação: Esta ementa contém mais tópicos do que efetivamente podem ser ministrados numa disciplina de 30 horas. O tópico escolhido a ser ministrado na referida disciplina, cada vez que ela for oferecida será registrado no Plano de Ensino da mesma.

ÁREA DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 04 – Fundamentos de Engenharia

EIXO 05: EI	EIXO 05: ENGENHARIA MECÂNICA					
			Carga h	orária		
			horas	horas-aula		
			275	330		
Desdobramer	nto em disciplinas obrigatórias					
Abreviação	Nome da disciplina	Classificação pelas DCN	horas 250	horas-aula 300		
MEC5.1	Metrologia	Profissiona- lizante	25	30		
MEC5.2	Estática	Profissiona- lizante	50	60		
MEC5.3	Processos de Fabricação	Profissiona- lizante	25	30		
MEC5.4	Laboratório de Processos de Fabricação	Profissiona- lizante	25	30		
MEC5.5	Mecânica Geral	Profissiona- lizante	25	30		
MEC5.6	Hidráulica e Pneumática	Específica	50	60		
MEC5.7	Sistemas Integrados da Manufatura	Específica	50	60		
Desdobramer	nto em disciplinas optativas					
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 25	Horas-aula 30		
OPT5.8	Tópicos Especiais em Mecânica	Específica	25	30		

Disciplina:	METROLOGIA
Abreviação:	MEC5.1

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica Prática Total		2	Obnicatánia	
-	30	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
DES4.1; MAT1.6	-

- Entender a importância dos fundamentos da metrologia;
- Associar as grandezas mensuráveis e suas unidades de medida no Sistema Internacional;
- Caracterizar os principais instrumentos de medição dimensional: princípio de funcionamento, procedimentos de leitura, aplicações, cuidados no uso e conservação.

EMENTA: Conceitos e termos da Metrologia; Organização da Metrologia no Brasil (rede de metrologia); Algarismos significativos; Sistemas internacionais de unidade de medida

(conversões de unidades, escrita de termos metrológicos); Conceitos básicos de estatística; Tipos de erros em sistemas de medição; Incerteza; Qualificação de instrumentos de medição. Conceitos de calibração e aferição. Padrões metrológicos. Ajuste e regulagem. Confiabilidade metrológica. Instrumentos simples de medidas lineares; Instrumentos simples de medidas angulares; Expressão completa do resultado de medição.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 05 - Engenharia Mecânica

Disciplina:	ESTÁTICA
Abreviação:	MEC5.2

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Teórica Prática Total		1	Obrigatária
60	-	60	4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MAT1.2; MAT1.5; FIS2.3	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Apreender conteúdos de Estática, atendendo à situação de pré-requisito às disciplinas Mecânica Geral e Resistência dos Materiais;
- Analisar problemas de Engenharia de uma maneira racional e lógica, utilizando os princípios básicos da mecânica.

EMENTA: Conceitos fundamentais da Mecânica. Estática da partícula. Resultante de sistemas de forças. Equilíbrio de um corpo rígido. Carregamento distribuído. Esforços internos e diagramas de esforços internos. Centro de gravidade e Centróide. Momentos e produtos de inércia.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 05 - Engenharia Mecânica

Disciplina:	PROCESSOS DE FABRICAÇÃO			
Abreviação:	MEC5.3			
CARGA HORÁRIA (horas-aula)		CRÉDITOS	NATUREZA	
Teórica	Prática Total		2	Obmicatómia
30	- 30		\ \(\times \)	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MEC5.1; ENG4.5	-

- Conhecer de forma ampla quais são os processos de fabricação do setor metal mecânico;
- Conhecer princípios de funcionamento dos equipamentos e aspectos de automação desses equipamentos;
- Avaliar que processo de fabricação é mais adequado para uma dada aplicação;
- Especificar processos de fabricação.

EMENTA: Conceito amplo de processos de fabricação no setor metal-mecânico. Processo de fabricação com e sem remoção de material. Processos de Usinagem, conformação mecânica, fundição, soldagem. Noções de processos especiais de fabricação: eletro-erosão; eletroquímica; ultrassom; raio laser e outros. Descrição dos diversos equipamentos utilizados. Noções de automatização e interligação com outros setores.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 05 - Engenharia Mecânica

Disciplina:	LABORATÓRIO DE PROCESSOS DE FABRICAÇÃO
Abreviação:	MEC5.4

CARGA HORÁRIA (horas-aula)		CRÉDITOS	NATUREZA	
Teórica	Prática Total			Obminotómio
-	30	30] [∠]	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
-	MEC5.3

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Verificar o funcionamento de máquinas operatrizes e acessórios;
- Distinguir peças, conjuntos e subconjuntos de equipamentos de fabricação;
- Programar e simular em computador, através de programas a fabricação em algumas máquinas operatrizes.

EMENTA: Conformação de chapas. Fundição e tratamento térmico. Processos de soldagem. Processos de usinagem. Ensaios metalográficos.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 05 - Engenharia Mecânica

Disciplina:	MECÂNICA GERAL
Abreviação:	MEC5.5

CARGA HORÁRIA (horas-aula)		CRÉDITOS	NATUREZA		
Teórica	Prática Total		2	Obmicatánia	
30	-	30		2	Obrigatória
PRÉ-REQUISITO		CO-REQ	UISITO		
MEC5.2 -		-	_		

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Desenvolver a capacidade de análise dos problemas de Engenharia;
- Aplicar os princípios básicos da cinemática e da dinâmica, tanto em partículas como em corpos rígidos.

EMENTA: Cinemática de uma partícula; Cinética de uma partícula; Cinemática de corpo rígido – movimento plano; Cinética de um corpo rígido no movimento plano: trabalho e energia;

Cinética de um corpo rígido no movimento plano: impulso e quantidade de movimento; Introdução a vibrações mecânicas.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 05 - Engenharia Mecânica

Disciplina:	HIDRÁULICA E PNEUMÁTICA
Abreviação:	MEC5.6

CARGA HORÁRIA (horas-aula)		CRÉDITOS	NATUREZA	
Teórica	Prática Total		4	Obminatómia
60	-	60	4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ENG4.8; CTR8.3	-

- Comparar a Hidráulica a outras formas de produção de trabalho;
- Conhecer os campos de aplicação e limitações da Hidráulica e da Pneumática;
- Compreender o conceito físico da Lei de Pascal;
- Aplicar as Leis que fundamentam a Hidrostática (definição de pressão na Hidrostática);
- Utilizar os princípios da conservação da energia, através da aplicação da Equação de Bernoulli na fluidodinâmica (conceito de pressão na Fluidodinâmica);
- Identificar, caracterizar e compreender requisitos básicos de especificações de cada componente de um Circuito Hidráulico Fundamental (atuadores lineares e rotativos, bombas volumétricas, tubulações, válvulas de controle direcional e de controle de pressão e fluxo);
- Aplicar a Simbologia Hidráulica de acordo com normas ISO / Cetop Analisar fenômenos induzidos (vazões e pressões induzidas) pelo avanço e retorno de atuadores lineares;
- Dimensionar todos os componentes de um circuito Hidráulico Fundamental com atuadores de duplo efeito;
- Especificar todos os componentes de um Circuito Hidráulico com utilização de Catálogos Técnicos de Fabricantes;
- Elaborar lista de componentes de um Circuito Hidráulico Fundamental; especificar e caracterizar acessórios (válvulas de controle de fluxo, reguladores de pressão, reservatórios, intensificadores);
- Analisar diversos tipos de circuitos hidráulicos industriais e da linha móvel (Móbile);
- Identificar, caracterizar e compreender requisitos básicos de especificações de cada componente de Circuitos Pneumáticos Básicos (atuadores lineares e rotativos, compressores, tubulações, válvulas de controle direcional e de controle de pressão e fluxo);
- Aplicar a Simbologia Pneumática de acordo com normas ISO / Cetop;
- Caracterizar acessórios (válvulas de controle de fluxo, reguladores de pressão, reservatórios;
- Analisar diversos tipos de circuitos de automatização pneumática industrial;
- Conhecer os elementos do sistema de geração do ar comprimido;
- Identificar os componentes utilizados no processo pneumático e eletropneumático;
- Ler e interpretar diagramas pneumáticos e eletropneumáticos;
- Projetar circuitos pneumáticos e eletropneumáticos;
- Montar circuitos pneumáticos e eletropneumáticos.

EMENTA: Oleodinâmica / comandos Óleo hidráulicos: Importância da hidráulica industrial; Unidades de pressão; prensas hidráulicas; componentes de um circuito hidráulico fundamental; análise de falhas de componentes de circuitos hidráulicos; introdução à simbologia normalizada; componentes do sistema óleo hidráulico e suas respectivas simbologias; circuitos óleo hidráulicos fundamentais; projeto de um sistema óleo hidráulico; análise de circuitos óleo hidráulicos; eletrohidráulica; normas de segurança.

Comandos pneumáticos: Importância da pneumática; componentes de circuitos pneumáticos e sua simbologia; análise de falhas em componentes de circuitos pneumáticos; introdução à simbologia normalizada; circuitos pneumáticos de automatização; projeto de sistema pneumático; circuitos pneumáticos fundamentais; análise de circuitos pneumáticos; eletropneumática.

NÚCLEO DE FORMAÇÃO DCN: Específica.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 05 - Engenharia Mecânica.

Disciplina:	SISTEMAS INTEGRADOS DE MANUFATURA
Abreviação:	MEC5.7

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Гео́rica Prática Total		1	Obmicatómia
60	-	60	4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ENG4.6	-

- Compreender a flexibilidade e a racionalização no contexto da manufatura;
- Obter conhecimento das influências do Layout na manufatura;
- Obter informações gerais sobre o que envolve a Programação da produção;
- Compreender o que se define por Simulação Computacional;
- Conhecer alguns dos principais elementos de manufatura automatizada;
- Entender como se dá a Estratégia diante da manufatura;
- Entender o modelo geral da Administração da Produção;
- Conhecer os principais objetivos da Produção e suas estratégicas;
- Conhecer as técnicas de Projetos de Redes de Operações Produtivas;
- Compreender os termos e conceitos pertinentes ao Planejamento e Controle da Produção;
- Entender a diferença entre MRP, MRPII e ERP;
- Compreender o processo evolutivo de produção denominado de Manufatura Enxuta (Lean Manufacturing) e o Toyotismo;
- Conhecer os 10 passos para o SIM (Sistema Integrado de Manufatura);
- Compreender o que se caracteriza como Manufatura Integrada por Computador, bem como as principais razões para a implementação do CIM;
- Compreender os aspectos pertinentes às redes de computadores voltados para aplicação, sessão, transporte, enlace e parte física;
- Compreender o que se define por Padrão TCP/IP;
- Compreender o conceito de Sistemas Flexíveis de Manufatura;
- Entender o processo conhecido como Troca Rápida de Ferramentas;
- Entender como é realizado o Dimensionamento de um FMS;

EMENTA: Histórico dos Sistemas de Manufatura e o Contexto Atual da Automação Industrial. Visão Sistêmica Organizacional e o Sistema de Manufatura: A Empresa e o Planejamento Estratégico; Níveis Organizacionais; Objetivos, Layouts e Processos da Manufatura. A Integração no Planejamento e Controle da Produção e do Processo: A Manufatura Estratégica; Elementos que constituem um sistema de manufatura. Sistemas Integrados de Manufatura (SIM): Conceitos; 10 passos para o SIM; Sistemas Flexíveis (Células Flexíveis – FMC e Sistema Flexível - FMS); Tecnologias de Produção; Estruturas de Controle no SIM. Tecnologias da Manufatura Integrada por Computador: CIM (Manufatura Integrada por Computador). O subsistema físico: caracterização de componentes; equipamentos de transporte e manuseio; O Sistema Transporte como elementos de integração; Redução do Tempo de Setup (Preparação).

NÚCLEO DE FORMAÇÃO DCN: Específica EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 05 - Engenharia Mecânica

Disciplina:	TÓPICOS ESPECIAIS EM MECÂNICA
Abreviação:	OPT5.8

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática Total		2	Ontotivo
30	-	30	2	Optativa

PRÉ-REQUISITO	CO-REQUISITO
-	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

Estudar tópicos especiais de Mecânica não contemplados nas disciplinas do eixo, ou ainda, realizar um aprofundamento em tópicos que foram iniciados ao longo de disciplinas do eixo.

EMENTA: Metrologia, estática, processos de fabricação, mecânica geral, hidráulica e pneumática, sistemas integrados de manufatura.

Observação: Esta ementa contém mais tópicos do que efetivamente podem ser ministrados numa disciplina de 30 horas. O tópico escolhido a ser ministrado na referida disciplina, cada vez que ela for oferecida será registrado no Plano de Ensino da mesma.

ÁREA DE FORMAÇÃO DCN: Específica.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 05 - Engenharia Mecânica.

EIXO 06: ELÉTRICA E CONVERSÃO				
			Carga h	orária
			Horas	Horas-aula
			225	270
Desdobramer	nto em disciplinas			
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 200	Horas-aula 240
ELE6.1	Circuitos Elétricos I	Profissiona- lizante	25	30
ELE6.2	Laboratório de Circuitos Elétricos I	Profissiona- lizante	25	30
ELE6.3	Circuitos Elétricos II	Profissiona- lizante	25	30
ELE6.4	Máquinas Elétricas	Profissiona- lizante	50	60
ELE6.5	Acionamentos Eletroeletrônicos	Específica	50	60
ELE6.6	Laboratório de Acionamentos Eletroeletrônicos	Específica	25	30
Desdobramer	nto em disciplinas optativas			
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 25	Horas-aula 30
OPT6.7	Tópicos Especiais em Elétrica	Específica	25	30

Disciplina:	CIRCUITOS ELÉTRICOS I
Abreviação:	ELE6.1

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática Total		2	Obmicatánia
30	-	30	\ \(\(\)	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
-	FIS2.4

- Obter conhecimento sobre os fundamentos teóricos e práticos de circuitos elétricos;
- Elaborar e solucionar problemas envolvendo circuitos e componentes elétricos fundamentais;
- Desenvolver análise crítica para solução de problemas envolvendo tensão e corrente elétrica e suas grandezas.

EMENTA: Elementos de circuitos: fontes de tensão e de corrente, transformações de fontes, Leis de Ohm e de Kirchhoff, construção de modelos; fontes dependentes e independentes, relações entre tensão, corrente e energia em elementos resistivos, capacitivos e indutivos, combinação em série, paralelo, divisores de tensão e de corrente; técnicas de análise de circuitos: métodos das tensões de nó e correntes de malha, transformações de fontes, circuitos

equivalentes de Thévenin e de Norton, superposição; Indutor e capacitor, circuitos RL, RC e RLC.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 06 - Elétrica E Conversão

Disciplina:	LABORATÓRIO DE CIRCUITOS ELÉTRICOS I
Abreviação:	ELE6.2

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica Prática Total		2	Obrigatária	
-	30	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
-	ELE6.1

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Obter conhecimento sobre os fundamentos teóricos e práticos de circuitos elétricos;
- Elaborar e solucionar problemas envolvendo circuitos e componentes elétricos fundamentais;
- Desenvolver análise crítica para solução de problemas envolvendo tensão e corrente elétrica e suas grandezas.

EMENTA: Verificações experimentais de tópicos abordados em Circuitos Elétricos I e simulações computacionais.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 06 - Elétrica E Conversão

Disciplina:	CIRCUITOS ELÉTRICOS II
Abreviação:	ELE6.3

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2 Obmigatánia	
30	-	30	\ \(\(\)	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ELE6.1	-

- Obter conhecimento sobre os fundamentos teóricos de circuitos elétricos monofásicos e trifásicos;
- Elaborar e solucionar problemas envolvendo circuitos e componentes elétricos;
- Desenvolver análise crítica para solução de problemas envolvendo tensão, corrente e potência elétrica e suas grandezas;
- Manipular diagrama fasoriais e operações com grandezas complexas em circuitos elétricos.

EMENTA: Análise de circuitos senoidais monofásicos e trifásicos, fasores, diagramas fasoriais, lugares geométricos, frequência complexa, potências instantânea, ativa, reativa, complexa e aparente, máxima transferência de potência, impedância e admitância, ressonância, valor eficaz; potências instantânea, ativa, reativa, complexa e aparente.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 06 - Elétrica e Conversão

Disciplina:	MÁQUINAS ELÉTRICAS
Abreviação:	ELE6.4

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2 Obnicatário	
30	-	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ELE6.3	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Compreender a importância da conversão eletromecânica de energia, das transformações eletromagnéticas da energia alternada, mono e trifásica, das máquinas elétricas alternadas e contínuas.
- Aprender os circuitos elétricos e magnéticos dos transformadores e máquinas elétricas e o caráter imprescindível de sua utilização no estudo da Engenharia aplicada.
- Dominar os conceitos básicos de máquinas estáticas e rotativas, suas características de conjugado e velocidade, e as aplicações dos diversos tipos de magnetização dos campos.

EMENTA: Transformadores; Máquinas Síncronas; Máquinas de Indução; Máquinas de Corrente Contínua; Máquinas especiais.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 06 - Elétrica e Conversão

Disciplina:	ACIONAMENTOS ELETROELETRÔNICOS
Abreviação:	ELE6.5

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	4	Obmicatómia
60	-	60	4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ELE6.4	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

• Projetar, executar e realizar a manutenção de sistemas industriais de acionamento de motores elétricos utilizando relés, contatores eletromagnéticos e conversores eletrônicos;

- Analisar o comportamento dos motores elétricos em função das necessidades mecânicas de conjugado, das perturbações elétricas da fonte supridora de energia e das condições ambientais adversas;
- Selecionar, de acordo com o regime de trabalho e características específicas de cada carga, o tipo e a potência do motor mais adequado.

EMENTA: Introdução a acionamentos elétricos; Modelos dinâmicos e simulação de motores elétricos; Características conjugado x velocidade; Acionamentos para sistemas industriais; Técnicas de controle de acionamentos elétricos; Variação de velocidade de motores elétricos; Conversores estáticos aplicados a acionamento de motores elétricos; dimensionamento de motores elétricos.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 06 - Elétrica e Conversão

Disciplina:	LABORATÓRIO DE ACIONAMENTOS ELETROELETRÔNICOS
Abreviação:	ELE6.6

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2 Obrigatária	
-	30	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
-	ELE6.5

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

Executar práticas de acionamentos de motores elétricos aplicados em sistemas industriais, utilizando os dispositivos de manobra e proteção em instalações elétricas industriais e conversores eletrônicos, conforme conteúdo previsto na disciplina teórica de Acionamentos Elétricos.

EMENTA: Introdução a acionamentos elétricos; Modelos dinâmicos e simulação de motores elétricos; Características conjugado x velocidade; Acionamentos para sistemas industriais; Técnicas de controle de acionamentos elétricos; Variação de velocidade de motores elétricos; Conversores estáticos aplicados a acionamento de motores elétricos; Dimensionamento de motores elétricos.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 06 - Elétrica e Conversão

Disciplina:	TÓPICOS ESPECIAIS EM ELÉTRICA
Abreviação:	OPT6.7

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Ontotivo
30	-	30	2	Optativa

PRÉ-REQUISITO	CO-REQUISITO
-	-

Estudar tópicos especiais em Elétrica não contemplados nas disciplinas do eixo, ou ainda, realizar um aprofundamento em tópicos que foram iniciados ao longo de disciplinas do eixo.

EMENTA: Circuitos elétricos, máquinas elétricas, acionamentos.

Observação: Esta ementa contém mais tópicos do que efetivamente podem ser ministrados numa disciplina de 30 horas. O tópico escolhido a ser ministrado na referida disciplina, cada vez que ela for oferecida será registrado no Plano de Ensino da mesma.

ÁREA DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 06 - Elétrica E Conversão

EIXO 07: ELETRÔNICA					
			Carga h	orária	
			Horas	Horas-aula	
			300	360	
Desdobramer	nto em disciplinas Obrigatórias				
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 275	Horas-aula 330	
ELT7.1	Eletrônica Aplicada	Específica	50	60	
ELT7.2	Laboratório de Eletrônica Aplicada	Específica	25	30	
ELT7.3	Instrumentação Eletrônica	Específica	25	30	
ELT7.4	Laboratório de Instrumentação Eletrônica	Específica	25	30	
ELT7.5	Sistemas Digitais	Profissionali- zante	50	60	
ELT7.6	Laboratório de Sistemas Digitais	Profissionali- zante	25	30	
ELT7.7	Sistemas Microprocessados	Específica	50	60	
ELT7.8	Laboratório de Sistemas Microprocessados	Específica	25	30	
Desdobramento em disciplinas optativas					
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 25	Horas-aula 30	
OPT7.9	Tópicos Especiais em Eletrônica	Específica	25	30	

Disciplina:	ELETRÔNICA APLICADA
Abreviação:	ELT7.1

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	1	Obnicatánia
60	-	60	4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ELE6.1	-

- Conhecer os princípios fundamentais da eletrônica, os dispositivos e suas aplicações;
- Solucionar problemas e elaborar pequenos projetos envolvendo dispositivos e componentes eletrônicos.

EMENTA: Introdução à Eletrônica Aplicada; diodos semicondutores; aplicação de diodos; noções de fonte de alimentação; transistores bipolares; transistor de efeito de campo; resposta emfrequência do BJT e JFET; amplificadores operacionais; conversores A/D – D/A; fundamentos de filtro ativo; osciladores e PLL.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 07 - Eletrônica

Disciplina:	LABORATÓRIO DE ELETRÔNICA APLICADA
Abreviação:	ELT7.2

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obmigatómia
-	30	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ELE6.1	ELT7.1

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer os princípios fundamentais da eletrônica, os dispositivos e suas aplicações em laboratório;
- Elaborar e analisar projetos eletrônicos em laboratório.

EMENTA: Verificações experimentais de tópicos abordados em Eletrônica Básica e simulações computacionais.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 07 - Eletrônica

Disciplina:	INSTRUMENTAÇÃO ELETRÔNICA
Abreviação:	ELT7.3

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obrigatária
30	-	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ELT7.1	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Compreender a importância da instrumentação industrial, das transformações das variáveis físicas em eletro-eletrônicas-digitais, para aplicações de apenas leitura e/ou controle;
- Compreender que os instrumentos industriais têm caráter imprescindível de utilização no estudo da engenharia aplicada à automação industrial;
- Dominar os conceitos básicos de instrumentação industrial, suas características técnicas de conversão de variáveis, e suas aplicações nos diversos tipos de plantas/processos industriais.

EMENTA: Introdução aos sistemas de instrumentação: Normas e terminologias, malhas e básicos, Exemplos de sistemas e diagramas de controle; Elementos de instrumentação industrial: Sistemas de medição, Erros e tipos de transdutores; Transmissores de sinais: Condicionamento, casamento, proteção, bootstraping, compensação, amplificação e processamento de sinais advindos de sensores: Hidropneumáticos, Magneto-Eletro/Eletrônicos;

Medição de variáveis de processos: Transdutores de posição, temperatura, nível, pressão/força, vazão/fluxo, ondas eletro/sonoras e analisadores; Elementos finais de controle: Válvulas e atuadores, Tipos de controles, Especificação e cálculos, Acessórios e instalações.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 07 – Eletrônica

Disciplina:	LABORATÓRIO DE INSTRUMENTAÇÃO ELETRÔNICA				
Abreviação:	ELT7.4				
CARGA HOR	RÁRIA (horas-au	la)		CRÉDITOS	NATUREZA
Teórica	Prática	Total		2	Obnicatónia
-	30	30		2	Obrigatória
PRÉ-REQUISITO		CO-REQU	JISITO		
ELT7.2		ELT7.3			

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Compreender a importância da instrumentação industrial, das transformações das variáveis físicas em eletro-eletrônicas-digitais, para aplicações de apenas leitura e/ou controle;
- Compreender que os instrumentos industriais têm caráter imprescindível de utilização no estudo da engenharia aplicada da automação industrial;
- Dominar os conceitos básicos de instrumentação industrial, suas características técnicas de conversão de variáveis, e suas aplicações nos diversos tipos de plantas/processos industriais.

EMENTA: Pesquisa de sistemas de instrumentação industrial; eletrônicos integrados Levantamento de funções transferência para medição, processamento e atuação para aplicações diversas nas variáveis de: posição/presença, velocidade/aceleração, eletro/ópticos, temperatura, nível, pressão/vácuo, vazão/fluxo, massa/força, radiações eletro/sonoras, analíticos e válvulas de controle.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 07 – Eletrônica

Disciplina:	SISTEMAS DIGITAIS
Abreviação:	ELT7.5

CARGA HORÁRIA (horas-aula)		CRÉDITOS	NATUREZA	
Teórica	Prática	Total	1 Obnigatánia	
60	-	60	4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ELT7.1	-

- Analisar circuitos lógicos digitais;
- Aplicar a lógica digital em processos físicos reais;
- Projetar circuitos lógicos digitais;
- Projetar circuitos osciladores e temporizadores;
- Analisar circuitos sequenciais;

- Projetar circuitos combinacionais dedicados;
- Projetar circuitos divisores de frequência;
- Identificar e utilizar corretamente os circuitos integrados TTL e CMOS.

EMENTA: Sistemas de numeração; álgebra e funções Booleanas; portas lógicas: tipos e aplicações; análise e projeto de circuitos combinacionais; flip-flops e elementos de memória, circuitos sequenciais síncronos e assíncronos; contadores, registradores; máquinas de estado; memórias e conversores AD-DA.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 07 - Eletrônica

Disciplina:	LABORATÓRIO DE SISTEMAS DIGITAIS
Abreviação:	ELT7.6

CARGA HORÁRIA (horas-aula)		CRÉDITOS	NATUREZA	
Teórica	Prática	Total	2	Obnicatánia
-	30	30] 2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ELT7.2	ELT7.5

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Analisar circuitos lógicos digitais;
- Aplicar a lógica digital em processos físicos reais;
- Projetar circuitos lógicos digitais;
- Projetar circuitos osciladores e temporizadores;
- Analisar circuitos sequenciais;
- Projetar circuitos combinacionais dedicados;
- Projetar circuitos divisores de frequência;
- Identificar e utilizar corretamente os circuitos integrados TTL e CMOS.

EMENTA: Desenvolvimento de montagens relacionadas em laboratório, solução de problemas práticos utilizando conceitos abordados na disciplina teórica relacionada e simulações em computador digital.

NÚCLEO DE FORMAÇÃO DCN: Profissionalizante

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 07 – Eletrônica

Disciplina:	SISTEMAS MICROPROCESSADOS
Abreviação:	ELT7.7

CARGA HORÁRIA (horas-aula)		CRÉDITOS	NATUREZA	
Teórica	Prática	Total	4	Obmicatómia
60	-	60	4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ELT7.5; CMP1.11	-

- Entender, desenvolver e projetar sistemas microprocessados que possam, de maneira isolada ou compartilhada, fazer o tratamento de variáveis físicas como entrada, tais como: temperatura, vazão, nível, pressão, velocidade entre outras, e estimular uma resposta do sistema.
- Aplicar esses conhecimentos em suas áreas profissionais, respeitando as Normas e Convenções da Engenharia de Automação Industrial.

EMENTA: Organização de um sistema microprocessado; memória: tipos, programação e acesso; descrição funcional do microprocessador; mapeamento de memória e de entrada e saída; conjunto básico de instruções; desenvolvimento de algoritmos e técnicas de programação; estudo de técnicas para acionamento e controle de periféricos; comunicação serial.

NÚCLEO DE FORMAÇÃO DCN: Específica EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 07 - Eletrônica

Disciplina:	LABORATÓRIO DE SISTEMAS MICROPROCESSADOS
Abreviação:	ELT7.8

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática Total		2	Obmicatánia
-	30	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
CMP1.12	ELT7.7

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Desenvolver e projetar sistemas microprocessados que possam, de maneira isolada ou compartilhada, fazer o tratamento de variáveis físicas como entrada, tais como: temperatura, vazão, nível, pressão, velocidade entre outras, e estimular uma resposta do sistema;
- Analisar a configuração básica de um microprocessador;
- Desenvolver programas para microprocessadores/microcontroladores;
- Projetar sistemas com circuitos PIC;
- Analisar sistemas controladores por microprocessadores/microcontroladores;
- Aplicar os recursos de interrupção por TIMER, EXTERNA, CCP e EEPROM dos microprocessadores/microcontroladores;
- Aplicar os recursos dos conversores A/D e D/A;
- Aplicar os princípios fundamentais de comunicação serial ente sistemas microprocessados;
- Projetar sistemas microprocessados simples.

EMENTA: Desenvolvimento de sistemas microprocessados para a solução de problemas práticos interdisciplinares e simulações em computador digital.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 07 – Eletrônica

Disciplina:	TÓPICOS ESPECIAIS EM ELETRÔNICA
Abreviação:	OPT7.9

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática Total		2	Omtotivo
30	-	30	2	Optativa

PRÉ-REQUISITO	CO-REQUISITO
-	-

Estudar tópicos especiais de Eletrônica não contemplados nas disciplinas do eixo, ou ainda realizar um aprofundamento em tópicos que foram iniciados ao longo de disciplinas do eixo.

EMENTA: Eletrônica aplicada, instrumentação eletrônica, sistemas digitais, sistemas microprocessados.

Observação: Esta ementa contém mais tópicos do que efetivamente podem ser ministrados numa disciplina de 30 horas. O tópico escolhido a ser ministrado na referida disciplina, cada vez que ela for oferecida será registrado no Plano de Ensino da mesma.

ÁREA DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 07 – Eletrônica

EIXO 08: CONTROLES					
			Carga ho	orária	
			Horas	Horas-aula	
			400	480	
Desdobramento em disciplinas obrigatórias					
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 375	Horas-aula 450	
CTR8.1	Controle e Automação	Específica	25	30	
CTR8.2	Laboratório de Controle e Automação	Específica	25	30	
CTR8.3	Controladores Lógico Programáveis	Específica	50	60	
CTR8.4	Sistemas de Controle de Processos Contínuos	Específica	50	60	
CTR8.5	Laboratório de Sistemas de Controle de Processos Contínuos	Específica	25	30	
CTR8.6	Controladores Digitais Programáveis	Específica	25	30	
CTR8.7	Modelamento de Sistemas de Controle	Específica	50	60	
CTR8.8	Sistemas de Controle de Processos Discretos	Específica	50	60	
CTR8.9	Laboratório de Sistemas Controle de Processos Discretos	Específica	25	30	
CTR8.10	Controle Moderno Multivariável	Específica	50	60	
Desdobramen	to em disciplinas optativas				
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 25	Horas-aula 30	
OPT8.11	Tópicos Especiais em Controles	Específica	25	30	

Disciplina:	CONTROLE E AUTOMAÇÃO	
Abreviação:	CTR8.1	

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática Total		2	Obminotómio
30	-	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ELT7.1	-

 Conceituar o Sistema de Controle e Sistema Realimentado e respectiva Instrumentação Passiva;

- Identificar as principais características e funções realizadas pela instrumentação em sistemas de controle;
- Representar e analisar diversos sistemas físicos através de diagramas de blocos e funções de transferência dos elementos Ativos;
- Classificar e conhecer tecnicamente as diversas formas de controles finais de processos, controladores industriais e respectivas estratégias de controle;
- Estudar, projetar e analisar estudos na área de controles de processos industriais.

EMENTA: Introdução aos sistemas de controle, História, Definições e Terminologia, Elementos Básicos de Instrumentos/ Controles, Representação do Sistema Controle, Fluxogramas P&I, Normas ISA-S51, Exemplos de Fluxogramas de Processo e Instrumentação Industriais. Classificação de áreas industriais, Receptores/Transmissores e Redes, Atmosferas explosivas, e Isoladores/Atuadores, Redes cabeadas e fibra ótica; Teorias de controle e automação, Características dos Processos, Função de Transferência de 1ª/2ªOrdem e superiores, Estabilidade, Controladores básicos de Processos, Funções de Controle Especiais, Controladores lógicos e analógicos; Técnicas básicas de projetos, Ações de Controle Proporcional, Integral e Derivativo, Sintonia dos Controladores PI, PD e PID, Métodos para Ajuste de Parâmetros dos PIDs, Algoritmos de Avaliação de Desempenho, Exemplos e Aplicações.

NÚCLEO DE FORMAÇÃO DCN: Específica EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 08 - Controles

Disciplina:	LABORATÓRIO DE CONTROLE E AUTOMAÇÃO
Abreviação:	CTR8.2

CARGA HORÁRIA (horas-aula)			CRÉDITOS	S NATUREZA
Teórica	Prática	Total	2	Obnicatánia
-	30	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ELT7.2	CTR8.1

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conceituar o Sistema de Controle e Sistema Realimentado e respectiva Instrumentação Passiva;
- Identificar as principais características e funções realizadas pela instrumentação em sistemas de controle;
- Representar e analisar diversos sistemas físicos através de diagramas de blocos e funções de transferência dos elementos Ativos;
- Classificar e conhecer tecnicamente as diversas formas de controles finais de processos, controladores industriais e respectivas estratégias de controle;
- Estudar, projetar e analisar estudos na área de controles de processos industriais.

EMENTA: Pesquisa de sistemas de controle industrial; Projeto de Instrumentação e Automação de Planta Industrial. Utilização de Planta de Processo Industrial para Automação de malhas de controle aberta e fechada, Processos de nível, pressão, vazão, temperatura, massa e análises.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 08 - Controles

Disciplina:	CONTROLADORES LÓGICO PROGRAMÁVEIS
Abreviação:	CTR8.3

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	1	Obmicatómia
60	-	60	4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
CMP1.11; ELT7.5	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Entender os conceitos principais de controladores de processos;
- Distinguir os diferentes tipos de controladores e suas aplicações;
- Aplicar linguagens de programação em comandos elétricos sequenciais e combinacionais;
- Projetar e dimensionar sistemas de controle experimentais utilizando CLPs.

EMENTA: Conceituação dos CLPs; Módulos de entrada e saída; Linguagens de programação de CLPs: norma IEC 61131-3; Lógicas de comando combinacionais e sequenciais com CLPs; Dimensionamento e configuração de controladores programáveis; Projeto de sistemas de controle e comandos elétricos baseados em controladores lógico-programáveis.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 08 - Controles

Disciplina:	SISTEMAS DE CONTROLE DE PROCESSOS CONTÍNUOS
Abreviação:	CTR8.4

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	4	Obnicatánia
60	-	60	4	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
MAT1.4; ELT7.3	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer e utilizar as principais características dos sistemas lineares;
- Desenvolver a análise de suas equações e determinar sua estabilidade;
- Utilizar os principais conceitos de controle moderno na resolução e análise de problemas envolvendo funções de transferência e equações de estado.

EMENTA: Características de Sistemas lineares. Análise e Síntese de Sistemas Contínuos. Transformada de Laplace: aplicações, teoremas e conceitos adicionais. Estudo de Sistema de Controle realimentado. Resposta em frequência. Estudo de Estabilidade de Sistemas de Controle realimentados. Análise do Lugar das Raízes. Diagramas de Bode e Nyquist. Projetos de compensadores em sistemas de controle: PID, atraso e avanço de fase, controle em cascata, casos especiais.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 08 - Controles

Disciplina:	LABORATÓRIO DE CONTROLE DE PROCESSOS CONTÍNUOS
Abreviação:	CTR8.5

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obmicatánia
-	30	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
ELT7.4	CTR8.4

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Compreender os principais aspectos de controle de processos;
- Identificar os parâmetros dos modelos das plantas-piloto;
- Conhecer os principais tipos de controladores industriais;
- Identificar diversos tipos de processos industriais;
- Conhecer e aplicar os principais métodos de sintonia de controladores industriais.
- EMENTA: Utilização de Planta Piloto para efetuar testes, identificação de parâmetros e análise da operação em malha aberta e em malha fechada. Projeto de malhas de controle e ajuste de controladores.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 08 - Controles

Disciplina:	CONTROLADORES DIGITAIS PROGRAMÁVEIS
Abreviação:	CTR8.6

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obmicatómia
30	-	30	<i>Z</i>	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
CTR8.3; CTR8.4	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer os conceitos fundamentais relacionados aos sinais existentes nos sistemas de automação, assim como os princípios da conversão analógico-digitais;
- Interpretar as características dos sinais digitais no domínio do tempo e da frequência;
- Conhecer as principais características dos meios de transmissão de sinais digitais, existentes nos sistemas de automação;
- Representar e analisar sistemas digitais por meio da transformada z;
- Entender os princípios básicos relacionados aos controladores digitais.

EMENTA: Módulos de entrada e saída analógicos dos CLPs; Linguagens de programação para variáveis analógicas em CLPs; Malhas de controle utilizando CLPs; Projeto de sistemas de

controle de variáveis contínuas; Controladores digitais tipo "single" e "multi-Ioops". Programação e parametrização dos controladores de malha e suas estratégias de controle.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 08 – Controle

Disciplina:	MODELAMENTO DE SISTEMAS DE CONTROLE
Abreviação:	CTR8.7

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática	Total		4	Obrigatória
60	-	60			
PRÉ-REQUISITO		CO-REQ	UISITO		
MAT1.4; MAT1.8; ELT7.3		-			

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer os conceitos fundamentais relacionados à aplicação da transformada de laplace e propriedades na resolução de problemas de controle;
- Interpretar os princípios físicos e determinar o modelo matemático de sistemas dinâmicos, no domínio da frequência, através do cálculo diferencial integral;
- Determinar o modelo matemático de sistemas físicos por meio de equações de espaço de estados;
- Representar e simplificar os sistemas físicos por meio de diagrama de blocos.

EMENTA: Modelamento matemático de sistemas físicos dinâmicos por meio de Equações diferenciais; Modelamento de sistemas físicos dinâmicos por meio de equações de espaços de estados; Análise dos sistemas de controle monovariável.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 08 - Controles

Disciplina:	SISTEMAS DE CONTROLE DE PROCESSOS DISCRETOS
Abreviação:	CTR8.8

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática	Total		4	Obrigatória
60	-	60			
PRÉ-REQUISITO		CO-REQ	UISITO		
MAT1.8; CTR8.4		_			

- Conhecer e identificar as principais características dos sistemas discretos;
- Utilizar os conceitos e teoremas da transformada z na análise de sistemas discretos;
- Determinar a estabilidade de sistemas de controle de processos discretos;
- Utilizar os principais conceitos de controle moderno na resolução e análise de problemas envolvendo sistemas discretos;
- Entender os princípios básicos relacionados aos controladores discretos.

EMENTA: Amostragem e processamento de sinais. Transformada Z. Análise e síntese de sistemas discretos. Modelagem, simulação e estudo de Sistemas de Controle Discretos. Estabilidade de sistemas de controle discretos. Projeto de sistemas de controle discretos.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 08 – Controles

Disciplina:	LABORATÓRIO PROCESSOS DISC	DE CRETO	SISTEMAS OS	DE	CONTROLE	DE
Abreviação:	CTR8.9					

CARGA HORÁ	RIA (horas-aula)		CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obnicatánia
-	30	30		Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
CTR8.5	CTR8.8

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Determinar as principais características dos sistemas discretos;
- Analisar sistemas discretos;
- Utilizar os principais conceitos de controle moderno na resolução e análise de problemas envolvendo sistemas discretos;
- Projetar controle por computador de um sistema;
- Controlar um sistema por meio de controle digital.

EMENTA: Simulação de Sistemas Amostrados. Análise de estabilidade de sistemas de controle discretos. Projeto em laboratório de sistemas de controle discretos, utilizando microcontroladores e computadores.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 08 - Controles

Disciplina:	CONTROLE MODERNO MULTIVARIÁVEL
Abreviação:	CTR8.10

CARGA HORÁRIA (horas-aula)		CRÉDITOS	NATUREZA		
Teórica	Prática	Total		4	Obmicatómia
60	-	60		4	Obrigatória
PRÉ-REQUISITO		CO-REQ	UISITO		
MAT1.7; CTR8.4; CTR8.7		-			

- Desenvolver os fundamentos teóricos de sistemas de controle linear multivariável;
- Apresentar as técnicas básicas de análise de sistemas de controle com múltiplas entradas e/ou saídas;
- Desenvolver projetos de controle aplicados à Engenharia de Automação Industrial.

EMENTA: Representação por variáveis de estado de sistemas contínuos e amostrados. Metodologia de análise e projeto de sistemas de controle multivariável. Controlabilidade, Observabilidade, Estabilizabilidade e Detectabilidade. Formas canônicas. Decomposição Canônica. Matriz Função de Transferência. Pólos e Zeros multivariáveis. Controle com o estado mensurável. Realimentação de estados. Propriedades: caso monovariável, extensão de resultados. Projeto de controladores para sistemas multivariáveis via equação de Lyapunov e Análise de Auto Estrutura. Estimador de estado. Observadores. Controle usando realimentação do estado estado estado. Teorema da separação. Controle usando realimentação da derivada das variáveis de estado.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 08 – Controles

Disciplina:	TÓPICOS ESPECIAIS EM CONTROLES
Abreviação:	OPT8.11

CARGA HORÁ	RIA (horas-aula)		CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Ontotivo
30	-	30	2	Optativa

PRÉ-REQUISITO	CO-REQUISITO
-	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

Estudar tópicos especiais em Controles não contemplados nas disciplinas do eixo, ou ainda realizar um aprofundamento em tópicos que foram iniciados ao longo de disciplinas do eixo.

EMENTA: Controle e automação, controladores lógico programáveis, sistemas de controle, controladores digitais programáveis, modelamento de sistemas de controle, controle moderno multivariável.

Observação: Esta ementa contém mais tópicos do que efetivamente podem ser ministrados numa disciplina de 30 horas. O tópico escolhido a ser ministrado na referida disciplina, cada vez que ela for oferecida será registrado no Plano de Ensino da mesma.

ÁREA DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 08 – Controles

EIXO 09: AUTOMAÇÃO INDUSTRIAL						
			Carga h	orária		
			horas	horas-aula		
			275	330		
Desdobramen	to em disciplinas obrigatórias					
Abreviação	Nome da disciplina	Classificação pelas DCN	horas 250	horas-aula 300		
AUT9.1	Redes Industriais de Automação	Específica	50	60		
AUT9.2	Sistemas de Controle Inteligente	Específica	25	30		
AUT9.3	Laboratório de Sistemas Inteligentes e DSP's	Específica	25	30		
AUT9.4	Processamento Digital de Sinais	Específica	25	30		
AUT9.5	Introdução à Robótica Industrial	Específica	25	30		
AUT9.6	Sistemas Distribuídos em Automação Industrial	Específica	25	30		
AUT9.7	Sistemas Supervisórios e Interfaces Homem-Máquina	Específica	50	60		
AUT9.8	Segurança e Confiabilidade de Sistemas de Controle e Automação	Específica	25	30		
Desdobramento em disciplinas optativas						
Abreviação	Nome da disciplina	Classificação pelas DCN	horas 25	horas-aula 30		
OPT9.9	Tópicos Especiais em Automação Industrial	Específica	25	30		

Disciplina:	REDES INDUSTRIAIS DE AUTOMAÇÃO
Abreviação:	AUT9.1

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	1	Obrigatória
60	-	60	4	

PRÉ-REQUISITO	CO-REQUISITO
CTR8.1	-

- Conhecer os conceitos fundamentais relacionados às redes industriais;
- Interpretar os princípios físicos e lógicos de arquiteturas de redes;
- Identificar as principais formas de transmissão de sinais para comunicação;
- Conhecer os principais protocolos associados às redes industriais, assim como as principais estratégias de gerenciamento de tais redes.

EMENTA: Introdução geral às redes industriais. Arquitetura de redes: Topologias; Protocolos; Modelos de camadas. Conceitos de transmissão: Modos e tipos de comunicação; Principais padrões; Meios de transmissão. Especificação dos principais padrões e protocolos de redes industriais. Avaliação de desempenho.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 09 – Automação Industrial

Disciplina:	SISTEMAS DE CONTROLES INTELIGENTES
Abreviação:	AUT9.2

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática	Total		2	Obrigatória
30	-	30			
PRÉ-REQUISITO C			CO-REQUISITO		
CMP1.11; CTR8.1			AUT9.3		

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer as técnicas de controle Fuzzy;
- Desenvolver técnicas de arquiteturas neurais artificiais;
- Aplicar técnicas com algoritmos genéticos.

EMENTA: Controle Fuzzy: Operações e propriedades dos conjuntos nebulosos, Regras e modificadores, Lógica nebulosa, Controladores e Sintonia de controladores nebulosos; Redes Neurais: Métodos de Otimização Numérica: Buscas unidimensional, gradiente, e extendido; Modelos e Arquiteturas Neurais Artificiais: Topologia, aproximação e aprendizados com supervisões forte/fraca, Aplicações industriais; desenvolvimentos de sistemas inteligentes, Algoritmos evolutivos, problemas de otimização, representação de indivíduos, operadores genéticos, seleção, cruzamento e mutação, critérios de para elitismo e problemas com restrições.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 09 – Automação Industrial

Disciplina:	LABORATÓRIO DE SISTEMAS INTELIGENTES E DSP'S
Abreviação:	AUT9.3

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática	Total		2	Obrigatária
-	30	30		\ \(^2\)	Obrigatória
PRÉ-REQUISITO CO			CO-REQUISITO		
CMP1.11; MAT1.4; MAT1.7			AUT9.4		

- Conhecer as técnicas de controle Fuzzy;
- Desenvolver técnicas de arquiteturas neurais artificiais;
- Aplicar técnicas com algoritmos genéticos;
- Utilizar hardware de Digital Signal Processing (DSP's).

 EMENTA: Aplicações MathLab&Simulink, SCI, CCStudio&TexasInstruments, FPGA/Xilinx.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 09 – Automação Industrial

Disciplina:	PROCESSAMENTO DIGITAL DE SINAIS
Abreviação:	AUT9.4

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obrigatória
30	-	30		

PRÉ-REQUISITO	CO-REQUISITO
CMP1.11; MAT1.4; MAT1.7	AUT9.2

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer hardware de Digital Signal Processing (DSP's);
- Desenvolver técnicas de processamento digital de sinais;
- Aplicar software de processamento de sinais (Matlab).

EMENTA: Processamentos em uma/duas dimensões, Características e modelo de sinais, Convolução e modulação, Quantização e codificações diferencial/ frequencial, Fundamentos de reconhecimentos de voz/imagem, Introdução e Fundamentos dos DSPs, Fixed e floating points, Filtros FIR/ FII, Transformadas Discrete e Fast Fourier, Filtros Adaptativos.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 09 – Automação Industrial

Disciplina:	INTRODUÇÃO À ROBÓTICA INDUSTRIAL
Abreviação:	AUT9.5

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática	Total		2	Obrigatária
30	-	30		2	Obrigatória
PRÉ-REQUISITO			CO-REQ	UISITO	
ELT7.7; AUT9.2			_		

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer os dispositivos de manipulação e robôs;
- Aprender as técnicas de manipulação estática e dinâmica;
- Desenvolver técnicas de programação para robôs manipuladores;
- Aplicar soluções robóticas industriais.

EMENTA: Dispositivos de manipulação e robôs manipuladores. Componentes dos robôs manipuladores. Cinemática dos manipuladores. Introdução à estática e à dinâmica dos manipuladores. Geração de trajetórias. Controle de robôs manipuladores. Sensores. Programação de robôs manipuladores. Aplicações de robôs na indústria.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 09 - Automação Industria

Disciplina:	SISTEMAS DISTRIBUÍDOS EM AUTOMAÇÃO INDUSTRIAL
Abreviação:	AUT9.6

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática	Total		2	Obrigatória
30	-	30			
PRÉ-REQUISITO			CO-REQ	UISITO	
CTR8.8; AUT9.1					

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Entender os conceitos principais de sistemas distribuídos;
- Distinguir as diferentes arquiteturas de sistemas distribuídos;
- Aplicar algoritmos de sincronização de sistemas distribuídos;
- Compreender os objetivos e as vantagens de sistemas de arquivos distribuídos;
- Conhecer diferentes métodos para tornar um sistema distribuído confiável.

EMENTA: Conceitos de sistemas distribuídos; Arquiteturas de sistemas distribuídos; Regras de comunicação e sincronização; Consistência, replicação, tolerância a falha e segurança; Soluções para sistemas distribuídos; Aplicações industriais.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 09 - Automação Industrial

Disciplina:	SISTEMAS MÁQUINA	SUPERVISÓRIOS	E	INTERFACES	HOMEM-
Abreviação:	AUT9.7				

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA	
Teórica	Prática	Total		4	Obmicatónia
60	-	60		4	Obrigatória
PRÉ-REQUISITO			CO-REQ	UISITO	
AUT9.1; CTR8.6; CTR8.8			-		

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Identificar, compreender e projetar as estruturas lógicas e físicas de um sistema de supervisão scada:
- Projetar e desenvolver telas de supervisão e controle utilizando sistemas scada;
- Programar relatórios padronizados da produção;
- Especificar driver de comunicação e software de supervisão para atender aos requisitos do processo.

EMENTA: Introdução aos Sistemas Supervisórios: Interfaces homem-máquina (IHM's). Interfaces chão-de-fábrica e redundantes (Níveis 0 e 1). Interfaces inteligentes e gerenciais

(Níveis 3 e 4). Sistemas supervisórios (SCADA) e Controles (SDCD). Programação de alarmes. Projeto de sinótico supervisório.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 09 - Automação Industrial

Disciplina:	SEGURANÇA E CONFIABILIDADE CONTROLE E AUTOMAÇÃO	DE	SISTEMAS	DE
Abreviação:	AUT9.8			

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obnicatánia
30	-	30	2	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
CTR8.8; AUT9.1; AUT9.4	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Compreender os conceitos fundamentais da confiabilidade;
- Apreender os modelos matemáticos associados à confiabilidade;
- Apreender os métodos que permitem resolver os problemas de estimação, de previsão e de otimização da confiabilidade;
- Adquirir ferramentas matemáticas necessárias à teoria de confiabilidade.

EMENTA: Conceito de Riscos: Nível de Integridade de Segurança (SIL), Normas modernas e Redundâncias eletivas, Tecnologias de Redes seguras e fibras óticas. Probabilidade e Confiabilidade: noções matemáticas. A segurança de funcionamento em sistemas complexos. Tolerância a falhas. Validação e verificação de hardware e de software. Técnicas de diagnóstico, detecção e sinalização de falhas. Técnicas de Recobrimento. Redundâncias. Alarmes. Proteção. Sistemas de Supervisão.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 09 - Automação Industrial

Disciplina:	TÓPICOS ESPECIAIS EM AUTOMAÇÃO INDUSTRIAL
Abreviação:	OPT9.9

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Ontotivo
30	-	30	2	Optativa

PRÉ-REQUISITO	CO-REQUISITO	
-	-	

OBJETIVOS:

Estudar tópicos especiais em Automação Industrial não contemplados nas disciplinas do eixo, ou ainda realizar um aprofundamento em tópicos que foram iniciados ao longo de disciplinas do eixo.

EMENTA: Redes industriais, sistemas de controle inteligente, processamento digital de sinais, robótica, sistemas distribuídos, sistemas supervisórios, segurança e confiabilidade de sistemas de controle e automação.

Observação: Esta ementa contém mais tópicos do que efetivamente podem ser ministrados numa disciplina de 30 horas. O tópico escolhido a ser ministrado na referida disciplina, cada vez que ela for oferecida será registrado no Plano de Ensino da mesma.

ÁREA DE FORMAÇÃO DCN: Específica EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 09 – Automação Industrial

EIXO 10: PRÁTICA PROFISSIONAL E INTEGRAÇÃO CURRICULAR						
			Carga ho	orária		
			Horas	Horas-aula		
			587,5	705		
Desdobramen	to em Disciplinas da Prática Profis	sional				
Abreviação	Nome da disciplina	Classificação pelas DCN	Horas 400	Horas-aula 480		
TCC10.1	Trabalho de Conclusão de Curso I	Específica	12,5	15		
TCC10.2	Trabalho de Conclusão de Curso II	Específica	12,5	15		
TES10.3	Estágio Supervisionado	Específica	25	30		
ESTG10.4	Estágio Curricular Supervisionado	Específica	300	360		
MCC10.5	Metodologia Científica	Básica	25	30		
MPC10.6	Metodologia de Pesquisa	Básica	25	30		
Desdobramen	Desdobramento em Atividades de Integração Curricular					
Abreviação	Abreviação Nome da Atividade		Horas 187,5	Horas-aula 225		
Atividades Co	omplementares		187,5	225		
TIC10.7	Iniciação Científica e Tecnológica	Máximo	80%			
TIC10.8	Monitoria	Máximo	80%			
TIC10.9	Atividades de Extensão	Máximo	50%			
TIC10.10	Atividade de Prática Profissional	Máximo	50%			
TIC10.11	Outras Atividades Complementares	Máximo	100%			

^{*} Carga horária que poderá ser integralizada para fins de obtenção de diploma

Disciplina:	TRABALHO DE CONCLUSÃO DE CURSO I
Abreviação:	TCC10.1

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	1	Obmicatánia
15	-	15] 1	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
2750 ha	MPC10.6

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

 Adquirir competências e habilidades necessárias ao planejamento e à execução de um projeto de pesquisa, na área da Engenharia de Automação Industrial, que resultará no Trabalho de Conclusão de Curso;

- Propiciar o desenvolvimento do Projeto de Trabalho de Conclusão de Curso, o qual será realizado sob orientação de um docente responsável, cumprindo todas as etapas de um trabalho científico;
- Avaliar, por meio de banca examinadora, composta por professores da instituição, a pertinência do projeto realizado.

EMENTA: Planejamento, desenvolvimento e avaliação do projeto do Trabalho de Conclusão de Curso, versando sobre uma temática pertinente ao curso, sob a orientação de um professor orientador.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 10 - Prática Profissional e Integração Curricular

Disciplina:	TRABALHO DE CONCLUSÃO DE CURSO II
Abreviação:	TCC10.2

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	1	Obmicatómia
15	-	15	1	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
TCC10.1	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Desenvolver seu trabalho monográfico de natureza técnico-científica, sob a orientação de um professor orientador;
- Acompanhar a elaboração do TCC;
- Estimular o desenvolvimento da capacidade de trabalho técnico-científico;
- Valorizar os conhecimentos adquiridos no decorrer do curso;
- Incentivar a criatividade e o espírito crítico do aluno;
- Organizar agendas de defesas do TCC;
- Organizar as bancas examinadoras do TCC;
- Receber a versão final do TCC em arquivo PDF.

EMENTA: Desenvolvimento e avaliação do Trabalho de Conclusão de Curso, versando sobre uma temática pertinente ao curso, sob a orientação de um professor orientador.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 10 - Prática Profissional e Integração Curricular

Disciplina:	ESTÁGIO SUPERVISIONADO
Abreviação:	TES10.3

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obrigatória

30 - 30	
---------	--

PRÉ-REQUISITO	CO-REQUISITO
2750 ha	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Orientar o aluno academicamente ao estágio industrial;
- Planejar o desenvolvimento do trabalho de estágio supervisionado;
- Desenvolver o trabalho planejado para apresentação escrita e oral do estágio supervisionado.

EMENTA: Orientação acadêmica e profissional mediante encontros regulares, programados, tanto no âmbito acadêmico quanto no ambiente profissional onde o estágio é realizado; participação do aluno nas atividades relacionadas ao estágio.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 10 - Prática Profissional e Integração Curricular

Disciplina:	ESTÁGIO SUPERVISIONADO
Abreviação:	ESTG10.4

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	24	Obmicatánia
-	360	360	24	Obrigatória

PRÉ-REQUISITO	CO-REQUISITO
2750 ha	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

- Conhecer o planejamento do supervisor industrial;
- Desenvolver o plano de estágio proposto pelo superior;
- Adquirir conhecimento de automação em processos industriais.

EMENTA: orientação acadêmica e profissional mediante encontros regulares, programados, tanto no âmbito acadêmico quanto no ambiente profissional onde o estágio é realizado; participação do aluno nas atividades relacionadas ao estágio.

NÚCLEO DE FORMAÇÃO DCN: Específica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 10 - Prática Profissional E Integração Curricular

Disciplina:	METODOLOGIA CIENTÍFICA
Abreviação:	MCC10.5

CARGA HORÁRIA (horas-aula)			CRÉDITOS	NATUREZA
Teórica	Prática	Total	2	Obrigatória
30	-	30	∠	Obrigatória

Projeto Pedagógico do Curso de Engenharia de Automação Industrial — Campus Araxá — Projeto de Reestruturação do Curso, 2020.

Centro Federal de Educação Tecnológica de Minas Gerais

Av. Ministro Olavo Drummond, 25 - Bairro São Geraldo - Araxá — MG - CEP: 38.180.510

PRÉ-REQUISITO	CO-REQUISITO
1000 ha	-

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

Aplicar os conhecimentos sobre a produção da pesquisa científica: a questão, o problema, a escolha do método.

EMENTA: Conceito de ciência; pesquisa em ciência e tecnologia; tipos de conhecimento; epistemologia das ciências; métodos de pesquisa; a produção da pesquisa científica.

NÚCLEO DE FORMAÇÃO DCN: Básica

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 10 - Prática Profissional e Integração Curricular

Disciplina:	METODOLOGIA DE PESQUISA
Abreviação:	MPC10.6

CARGA HORÁRIA (horas-aula)		CRÉDITOS	NATUREZA		
Teórica	Prática Total		2	Obrigatória	
30	-	30			Obrigatória
PRÉ-REQUISIT	O	CO-REQ		UISITO	
MCC10.5		TCC10.1			

OBJETIVOS: A disciplina deverá possibilitar ao estudante:

Estruturar trabalhos de pesquisa técnico-científica na área de Engenharia de Automação Industrial.

EMENTA: Produção do trabalho técnico-científico, versando sobre tema da área de Engenharia de Automação Industrial; aplicação dos conhecimentos sobre a produção da pesquisa científica: a questão, o problema, a escolha do método, entre outros.

NÚCLEO DE FORMAÇÃO DCN: Básica.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 10 - Prática Profissional e Integração Curricular

Atividade:	INICIAÇÃO CIENTÍFICA E TECNOLÓGICA
Abreviação:	TIC10.7

OBJETIVOS: A atividade deverá possibilitar ao estudante:

- Despertar vocação científica para participação efetiva em projetos de pesquisa, principalmente aqueles vinculados aos Grupos de Pesquisa institucionais;
- Desenvolver a capacidade de elaborar projetos, metodologias de pesquisa, produção e científica.

EMENTA: Cada semestre de iniciação científica e tecnológica comprovada corresponde a 120 (cento e vinte) horas-aula, se realizada de acordo com as normas estabelecidas pelo CEPE e se o Relatório Técnico Final for aprovado pela instância competente.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 10 - Prática Profissional e Integração Curricular

Atividade:	MONITORIA
Abreviação:	TIC10.8

OBJETIVOS: A atividade deverá possibilitar ao estudante:

- Obter experiência para a atividade docente, mesmo nos cursos com grau de bacharelado, e
 promover melhoria na qualidade do ensino da graduação, articulando teoria e prática na
 produção do conhecimento, sob orientação de um docente responsável pela disciplina na qual
 o discente for monitor;
- Obter subsídios teóricos que auxiliem na consolidação de uma atividade docente coerente à
 realidade atual, a partir do momento que se fomentam as trocas de conhecimento entre
 professores orientadores, monitores e discentes atendidos a partir das discussões, sob as mais
 variadas questões teóricas e práticas, fortalecendo o processo ensino-aprendizagem.

EMENTA: Cada semestre letivo de monitoria comprovada, em disciplinas dos cursos superiores do CEFET-MG, corresponde a 45 horas-aula, se realizada de acordo com as normas estabelecidas pelo CEPE e se o Relatório Técnico Final for aprovado pela instância competente.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 10 - Prática Profissional e Integração Curricular

Atividade:	ATIVIDADE DE EXTENSÃO
Abreviação:	TIC10.9

OBJETIVOS: A atividade deverá possibilitar ao estudante:

Promover a integração Escola-Comunidade e apoio à formação e ao crescimento intelectual e social da comunidade universitária e do público em geral.

EMENTA: Poderão ser integralizadas as atividades de extensão, se realizadas de acordo com as normas estabelecidas pelo CEPE e se o Relatório Técnico Final for aprovado pela instância competente.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 10 - Prática Profissional E Integração Curricular

Atividade:	ATIVIDADE DE PRÁTICA PROFISSIONAL
Abreviação:	TIC10.10

OBJETIVOS: A atividade deverá possibilitar ao estudante:

- Consolidar os conteúdos estudados ao longo do curso, possibilitando a integração teoria/prática;
- Realizar a aplicabilidade orientada dos estudos desenvolvidos durante o curso;
- Desenvolver a capacitação de síntese aplicativa do aprendizado adquirido durante o curso
- Elaborar relatórios técnicos;
- Realizar a avaliação de relatório final.

EMENTA: Poderão ser integralizadas as atividades de prática profissional, se realizadas de acordo com as normas estabelecidas pelo CEPE e se o Relatório Técnico Final for aprovado pela instância competente.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 10 - Prática Profissional e Integração Curricular

Atividade:	OUTRAS ATIVIDADES COMPLEMENTARES
Abreviação:	TIC10.11

OBJETIVOS: A atividade deverá possibilitar ao estudante:

Participar de projetos de iniciação científica, extensão e monitorias e outras atividades complementares.

EMENTA: Poderão ser integralizadas as outras atividades complementares, se realizadas de acordo com as normas estabelecidas pelo CEPE e, em casos específicos, por determinação dos Colegiados de Curso, mediante aprovação do Relatório Técnico Final.

EIXO DE CONTEÚDOS E ATIVIDADES: Eixo 10 - Prática Profissional e Integração Curricular

4.4.4 Quadros-síntese da estrutura curricular

A seguir são apresentados os quadros-síntese relativos à estrutura curricular do curso, a relação de disciplinas por período, pré-requisitos e co-requisitos, a relção de disciplinas optativas seguida de pré e co-requisitos e o quadro referente a estrutura da matriz curricular.

Tabela 6 - Síntese da distribuição de carga horária do curso

N	Tipo de componente curricular	Créditos	Carga horária (horas)	Carga horária (horas-aula) ²⁹	Percentual do total (%)
1	Disciplinas obrigatórias	233	2912,5	3495	79,90%
2	Disciplinas optativas e eletivas	21	250	300	6,86%
3	Estágio curricular obrigatório	24	300	360	8,23%
4	Atividades complementares	15	187,5	225	5,14%
(Carga horária total do curso	292	3650	4380	100,00%

 $^{^{29}}$ A unidade hora utilizada refere-se à definição estabelecida no artigo 3° da Resolução MEC N $_{\circ}$ 3, de 3 de julho de 2007.

Tabela 7 - Distribuição de carga horária obrigatória por eixo

Eixo	Denominação	Carga horária (horas)	Carga horária (horas-aula)
1	Matemática e Computação	575	690
2	Física e Química	250	300
2 3	Ciências Humanas, Sociais e Gerenciais	312,5	375
4	Fundamentos de Engenharia	325	390
5	Engenharia Mecânica	250	300
6	Elétrica e Energia	200	240
7	Eletrônica	275	330
8	Controles	375	450
9	Automação	250	300
10 *	Prática Profissional e Integração Curricular	587,5	705
	Total de carga horária Obrigatória	2912,5	3495
**	Total de carga horária Optativa	250	300
***	Atividades Complementares	187,5	225
***	Estágio Supervisionado	300	360
	Total de carga horária do curso	3650	4380

^{*} Incluído carga-horária obrigatória (100 horas), atividades complementares e estágio supervisionado.

As disciplinas obrigatórias estruturadas nos Eixos de Conteúdos e Atividades foram classificadas de acordo com as Diretrizes Curriculares Nacionais (DCN) dos Cursos de Graduação em Engenharia (Resolução CNE/CES No 11, de 11 de março de 2002):

Art. 6º - Todo o curso de Engenharia, independente de sua modalidade, deve possuir em seu currículo um núcleo de conteúdos básicos, um núcleo de conteúdos profissionalizantes e um núcleo de conteúdos específicos que caracterizem a modalidade.

- § 1º O núcleo de conteúdos básicos, cerca de 30% da carga horária mínima.
- § 3º O núcleo de conteúdos profissionalizantes, cerca de 15% de carga horária mínima, versará sobre um subconjunto coerente dos tópicos abaixo discriminados, a ser definido pela IES.
- § 4º O núcleo de conteúdos específicos se constitui em extensões e aprofundamentos dos conteúdos do núcleo de conteúdos profissionalizantes, bem como de outros conteúdos destinados a caracterizar modalidades. Estes conteúdos, consubstanciando o restante da carga horária total, serão propostos exclusivamente pela IES.

Na Tabela 8 a seguir é apresentada a classificação das disciplinas dos conteúdos obrigatórios, assim como a porcentagem dessas disciplinas em relação à carga horária de 4100 horas correspondentes à Carga Horária Total do Curso.

^{**} Todas as disciplinas optativas deverão ser múltiplas de 15 h-a.

^{***} Atividades fora da sala de aula.

Tabela 8 - Classificação das disciplinas obrigatórias pelas Diretrizes Curriculares Nacionais dos Cursos de Graduação em Engenharia

Núcleo de Conteúdos Bá	ísicos		Núcleo de Conteúdos Profissi	on aliz ante	es	Núcleo de Conteúdos Espe	cíficos	
Nome da Disciplina	Carga I	Iorária	Nome de Dissiplina	Carga I	Horária	Nome de Dissipline	Carga I	Horária
Nome da Disciplina	ha	h	Nome da Disciplina	ha	h	Nome da Disciplina	ha	h
Cálculo I	90	75	Circuitos Elétricos I	30	25	Hidráulica e Pneumática	60	50
Cálculo II	90	75	Ciências dos Materiais	30	25	Contexto Social e Prof do Eng de Automação Industrial	30	25
Cálculo III	60	50	Circuitos Elétricos II	30	25	Controladores Digitais Programáveis	30	25
Cálculo IV	60	50	Introdução à Engenharia de Segurança	30	25	Controladores Lógicos Programáveis	60	50
Desenho T écnico	60	50	Lab.de Processos de Fabricação	30	25	Controle e Automação	30	25
Estatística	60	50	Lab.de Sistemas Digitais	30	25	Controle Moderno Multivariável	60	50
Filosofia da Tecnologia	30	25	Laboratório de Circuitos Elétricos I	30	25	Instrumentação Eletrônica	30	25
Física Experimental I	30	25	Pesquisa Operacional	30	25	Lab Sistemas Controle Processos Discretos	30	25
Física Experimental II	30	25	Processos de Fabricação	30	25	Lab.de Controle e Automação	30	25
Física I	60	50	Sistemas Digitais	60	50	Lab.de Instrumentação Eletrônica	30	25
Física II	60	50	Metrologia	30	25	Lab.de Sistemas Microprocessados	30	25
Física III	60	50	Estática	60	50	Lab.Sistemas de Controle Processos Contínuos	30	25
Álgebra Linear	60	50	Resistência dos Materiais	60	50	Lab.Sistemas Inteligente e DSP's	30	25
Geometria Analítica e Álgebra Vetorial	90	75	Fundamentos de Termodinâmica e Transferência de Calor	60	50	Manutenção Industrial	30	25
Introdução à Administração	30	25	Mecânica Geral	30	25	Eletrônica Aplicada	60	50
Introdução à Economia	30	25	Máquinas Elétricas 60 50 Laboratório de Eletrônica Aplicada				30	25
Introdução à Sociologia	30	25	Mecânica dos Fluidos 30 25 Modelamento de Sistemas de Controle		60	50		
Metodologia de Pesquisa	30	25	Normalização e Qualidade Industrial	30	25	Orientação do Trabalho de Estágio Supervisionado	30	25
Lab. Programação de Computadores I	30	25	Planejamento e Controle da Produção 30 25 Processamento Digital de Sinais		Processamento Digital de Sinais	30	25	
Lab. Programação de Computadores II	30	25	,		Redes Industriais de Automação	60	50	
Lab.Quim.Basica	30	25				Segurança e Confiabilidade em S.Controle & Automação	30	25
Projeto Técnico II	60	50				Sistemas de Controle Inteligentes	30	25
Programação de Computadores I	30	25				Sistemas de Controle de Processos Contínuos	60	50
Programação de Computadores II	30	25				Sistemas de Controle de Processos Discretos	60	50
Psicologia Aplicada às Organizações	30	25				Sistemas Distribuídos em Automação Industrial	30	25
Química Básica	30	25				Sistemas Integrados da Manufatura	60	50
Introdução à Prática Experimental	15	12,5				Sistemas Microprocessados	60	50
Projeto Técnico I	30	25				Introdução à Robótica Industrial	30	25
Metodologia Científica	30	25				Sistemas Supervisórios e Interfaces Homem Máquina	60	50
Gestão Ambiental	30	25				T rabalho de Conclusão de Curso I	15	12,5
Gestão de Recursos Humanos	30	25				Trabalho de Conclusão de Curso II	15	12,5
Libras I - Optativa	30	25				Acionamentos Elétricoeletrônicos	60	50
Libras II - Opttiva	30	25				Laboratório de Acionamentos Elétricoeletrônicos	30	25
Métodos Numéricos Computacionais	60	50				Disciplinas optatīvas- 4 P	30	25
						Disciplinas optatīvas- 5 P	30	25
						Disciplinas optatīvas- 6P	30	25
						Disciplinas optatīvas- 7 P	30	25
						Disciplinas optativas- 8 P	30	25
						Disciplinas optativas- 9 P	30	25
						Disciplinas optativas- 10 P	60	50
	I	l	I	1		I	1	I

4.5 Matriz Curricular

A elaboração da matriz curricular, dividida em 10 períodos, visou equalizar o número de disciplinas por complexidade do período. A Tabela 9 apresenta esta divisão nos períodos das disciplinas curriculares.

Tabela 9 - Matriz curricular

			PRIN	MEIRO PE	ERÍODO				
Abreviação	Nome da disciplina	Aulas/ Semana	НА	Horas]	Pré-requisitos	Co-req	Tipo	Eixo
QUI2.1	Química Básica	2	30	25				BAS	2
QUI2.2	Laboratório de Química Básica	2	30	25			QUI2.1	BAS	2
MAT1.1	Cálculo I	6	90	75				BAS	1
MAT1.5	Geometria Analítica e Álgebra Vetorial	6	90	75				BAS	1
CHS3.1	Contexto Social e Profissional do Engenheiro de Automação Industrial	2	30	25				ESP	3
CMP1.9	Programação de Computadores I	2	30	25				BAS	1
CMP1.10	Laboratório de Programação de Computadores I	2	30	25			CMP1.9	BAS	1
DES4.1	Desenho Técnico	4	60	50				BAS	4
CHS3.2	Introdução à Prática Experimental	1	15	12,5				BAS	3
OPT	Disciplinas optativas	0	0	0					
	TOTAL	27	405	337,5					
	ACUMULADO	27	405	337,5					
			SEG	UNDO PI	ERÍODO		-		
Abreviação	Nome da disciplina	Aulas/ Semana	НА	Horas]	Pré-requisitos	Co-req	Tipo	Eixo
FIS2.3	Física I	4	60	50	MAT1.1			BAS	2
CMP1.11	Programação de Computadores II	2	30	25	CMP1.9	CMP1.10		BAS	1
CMP1.12	Laboratório de Programação de Computadores II	2	30	25			CMP1.11	BAS	1
MAT1.2	Cálculo II	6	90	75	MAT1.1			BAS	1
MAT1.6	Estatística	4	60	50	MAT1.1		MAT1.2	BAS	1
ENG4.4	Ciências dos Materiais	2	30	25	QUI2.1			PROF	4
DES4.2	Projeto Técnico I	2	30	25	DES4.1			BAS	4
OPT3.14	Libras I	2	30	25				BAS	3
	TOTAL	22	330	275					
	ACUMULADO	49	735	612,5					
	ACUMULADO DE OPTATIVAS	2	30	25					

			TER	CEIRO PI	ERÍODO					
Abreviação	Nome da disciplina	Aulas/ Semana	НА	Horas]	Pré-requisitos	S	Co-req	Tipo	Eixo
FIS2.4	Física II	4	60	50	FIS2.3	MAT1.2			BAS	2
FIS2.5	Física Experimental I	2	30	25				FIS2.4	BAS	2
MAT1.3	Cálculo III	4	60	50	MAT1.2				BAS	1
ELE6.1	Circuitos Elétricos I	2	30	25	FIS2.4				PROF	6
ELE6.2	Laboratório de Circuitos	2	30	25				ELE6.1	PROF	6
	Elétricos I							ELEO.1		
MEC5.1	Metrologia	2	30	25	DES4.1	MAT1.6			PROF	5
MAT1.7	Álgebra Linear	4	60	50	MAT1.2	MAT1.5			BAS	1
MEC5.2	Estática	4	60	50	MAT1.2	MAT1.5	FIS2.3		PROF	5
	TOTAL	24	360	300						
	ACUMULADO	73	1095	912,5						
	ACUMULADO DE	2	30	25						
	OPTATIVAS	_			- 1					
	T		QU.	ARTO PE	RÍODO					
Abreviação	Nome da disciplina	Aulas/ Semana	НА	Horas]	Pré-requisitos	S	Co-req	Tipo	Eixo
FIS2.6	Física III	4	60	50	FIS2.4	FIS2.5			BAS	2
FIS2.7	Física Experimental II	2	30	25	FIS2.5			FIS2.6	BAS	2
MAT1.4	Cálculo IV	4	60	50	MAT1.3				BAS	1
MCC10.5	Metodologia Científica	2	30	25	1000На				BAS	11
ELE6.3	Circuitos Elétricos II	2	30	25	ELE6.1				PROF	6
ENG4.5	Resistência dos Materiais	4	60	50	MEC5.2	ENG4.4			PROF	4
MAT1.8	Métodos Numéricos Computacionais	4	60	50	CMP1.11			MAT1.3	BAS	1
GER3.12	Introdução à Administração	2	30	25	700Ha				BAS	3
OPT	Disciplinas Optativas	2	30	25					ESP	
OPT3.14	Libras II	2	30	25					BAS	3
	TOTAL	24	360	300						
	ACUMULADO	97	1455	1212,5						
	ACUMULADO DE									
	OPTATIVAS	6	90	75						
			QU	INTO PE	RÍODO					
Abreviação	Nome da disciplina	Aulas/ Semana	НА	Horas	1	Pré-requisitos	S	Co-req	Tipo	Eixo
MEC5.3	Processos de Fabricação	2	30	25	MEC5.1	ENG4.5			PROF	5
MEC5.4	Laboratório de Processos de Fabricação	2	30	25				MEC5.3	PROF	5
MEC5.5	Mecânica Geral	2	30	25	MEC5.2				PROF	5
CHS3.3	Filosofia da Tecnologia	2	30	25	1250HA				BAS	3
CHS3.4	Introdução à Sociologia	2	30	25	1250HA				BAS	3
ELT7.1	Eletrônica Aplicada	4	60	50	ELE6.1				ESP	7
ELT7.2	Laboratório de Eletrônica Aplicada	2	30	25	ELE6.1			ELT7.1	ESP	7
ELE6.4	Máquinas Elétricas	4	60	50	ELE6.3				PROF	6
CHS3.5	Psicologia Aplicada às Organizações	2	30	25	1250На				BAS	3
ENG4.8	Mecânica dos Fluidos	2	30	25	FIS2.6	MAT1.3			PROF	4
OPT	Disciplinas Optativas	2	30	25					ESP	
	TOTAL	24	360	300						
	ACUMULADO	121	1815	1512,5						
	ACUMULADO DE OPTATIVAS	8	120	100						

			SE	XTO PER	ÍODO					
Abreviação	Nome da disciplina	Aulas/ Semana	НА	Horas	I	Pré-requisito	s	Co-req	Tipo	Eixo
ELT7.3	Instrumentação Eletrônica	2	30	25	ELT7.1				ESP	7
ELT7.4	Laboratório de Instrumentação Eletrônica	2	30	25	ELT7.2			ELT7.3	ESP	7
ELT7.5	Sistemas Digitais	4	60	50	ELT7.1				PROF	7
ELT7.6	Laboratório de Sistemas Digitais	2	30	25	ELT7.2			ELT7.5	PROF	7
ELE6.5	Acionamentos Elétricos	4	60	50	ELE6.4				ESP	6
ELE6.6	Laboratório de Acionamentos Elétricos	2	30	25				ELE6.5	ESP	6
ENG4.7	Fundamentos de Termodinâmica e Transferência de Calor	4	60	50	FIS2.6	MAT1.3			PROF	4
GER3.7	Gestão Ambiental	2	30	25	1500Ha				BAS	3
CTR8.7	Modelamento de Sistemas de Controle	4	60	50	MAT1.8	ELT7.3	MAT1.4		ESP	8
OPT	Disciplinas optativas	2	30	25					ESP	
	TOTAL	26	390	325						
	ACUMULADO	147	2205	1837,5						
	ACUMULADO DE OPTATIVAS	10	150	125						
	•		SÉ.	TIMO PER	RÍODO					
Abreviação	Nome da disciplina	Aulas/ Semana	НА	Horas	I	Pré-requisito	s	Co-req	Tipo	Eixo
CTR8.1	Controle e Automação	2	30	25	ELT7.1				ESP	8
CTR8.2	Laboratório de Controle e Automação	2	30	25	ELT7.2			CTR8.1	ESP	8
ELT7.7	Sistemas Microprocessados	4	60	50	ELT7.1	ELT7.5	CMP1.11		ESP	7
ELT7.8	Laboratório de Sistemas Microprocessados	2	30	25			CMP1.12	ELT7.7	ESP	7
CTR8.3	Controladores Lógicos Programáveis	4	60	50	CMP1.11	ELT7.5			ESP	8
GER3.9	Introdução à Engenharia de Segurança	2	30	25	1750На				PROF	3
CTR8.4	Sistemas de Controle de Processos Contínuos	4	60	50	MAT1.4	ELT7.3			ESP	8
CTR8.5	Laboratório de Sistemas de Controle de Processos Contínuos	2	30	25		ELT7.4		CTR8.4	ESP	8
ENG4.6	Planejamento e Controle da Produção	2	30	25	MEC5.3				PROF	4
GER3.8	Normalização e Qualidade Industrial	2	30	25	MAT1.6	1250 Ha			PROF	3
OPT	Disciplinas optativas	2	30	25					ESP	
	TOTAL	26	390	325						
	ACUMULADO	173	2595	2162,5						
	ACUMULADO DE OPTATIVAS	12	180	150						

			CIO	TAVO PEI	RÍODO					
Abreviação	Nome da disciplina	Aulas/ Semana	НА	Horas		Pré-requisito	s	Co-req	Tipo	Eixo
CTR8.8	Sistemas de Controle de Processos Discretos	4	60	50	MAT1.8	CTR8.4			ESP	8
CTR8.9	Laboratório de Sistemas de Controle de Processos Discretos	2	30	25	CTR8.5			CTR8.8	ESP	8
DES4.3	Projeto Técnico II	4	60	50	DES4.2	MCC11.5			BAS	4
AUT9.1	Redes Industriais de Automação	4	60	50	CTR8.1				ESP	9
MEC5.6	Hidráulica e Pneumática	4	60	50	ENG4.8	CTR8.3			ESP	5
CTR8.6	Controladores Digitais Programáveis	2	30	25	CTR8.3	CTR8.4			ESP	8
GER3.6	Gestão de Recursos Humanos	2	30	25	2500На				BAS	3
MEC5.7	Sistemas Integrados de Manufatura	4	60	50	ENG4.6				ESP	5
OPT	Disciplinas optativas	2	30	25					ESP	
	TOTAL	26	390	325						
	ACUMULADO	199	2985	2487,5						
	ACUMULADO DE OPTATIVAS	14	210	175						
			NO	ONO PER	ÍODO	•		•		•
Abreviação	Nome da disciplina	Aulas/ Semana	НА	Horas	Pré-requisitos			Co-req	Tipo	Eixo
AUT9.2	Sistemas de Controle Inteligente	2	30	25	CMP1.11	CTR8.1		AUT9.3	ESP	9
AUT9.3	Laboratório de Sistemas Inteligentes e DSP's	2	30	25	CMP1.11	MAT1.4	MAT1.7	AUT9.4	ESP	9
AUT9.4	Processamento Digital de Sinais	2	30	25	CMP1.11	MAT1.4	MAT1.7	AUT9.2	ESP	9
ENG4.9	Manutenção Industrial	2	30	25	2750На				ESP	4
GER3.13	Pesquisa Operacional	2	30	25	MAT1.7	1750Ha			PROF	3
CTR8.10	Controle Moderno Multivariável	4	60	50	CTR8.4	MAT1.7	CTR8.7		ESP	8
AUT9.5	Introdução à Robótica Industrial	2	30	25	ELT7.7	AUT9.2			ESP	9
GER3.10	Introdução ao Direito	2	30	25	2750На				PROF	3
GER3.11	Introdução à Economia	2	30	25	2750На				BAS	3
MPC10.6	Metodologia de Pesquisa	2	30	25	MCC10.5			TCC10.1	BAS	11
TCC10.1	Trabalho de Conclusão de Curso I	1	15	12,5	2750На			MPC10.6	ESP	11
OPT	Disciplinas optativas	2	30	25					ESP	
	TOTAL	23	345	287,5						
	ACUMULADO	222	3330	2775						
	ACUMULADO DE OPTATIVAS	16	240	200						

			DÉC	CIMO PE	RÍODO					
Abreviação	Nome da disciplina	Aulas/ Semana	НА	Horas	I	Pré-requisito	s	Co-req	Tipo	Eixo
AUT9.6	Sistemas Distribuídos em Automação Industrial	2	30	25	CTR8.8	AUT9.1			ESP	9
AUT9.8	Segurança e Confiabilidade de Sistemas de Controle e Automação	2	30	25	AUT9.1	CTR8.8	AUT9.4		ESP	9
AUT9.7	Sistemas Supervisórios e Interfaces Homem- Máquina	4	60	50	AUT9.1	CTR8.6	CTR8.8		ESP	9
TCC10.2	Trabalho de Conclusão de Curso II	1	15	12,5	TCC10.1				ESP	11
TES10.3	Orientação do Trabalho de Estágio Supervisionado	2	30	25	2750На				ESP	11
OPT	Disciplinas optativas	5	75	62,5					ESP	
	TOTAL	11	165	137,5						
	ACUMULADO	233	3495	2912,5						
	ACUMULADO DE OPTATIVAS	21	315	262,5						

Já a Tabela 10 apresenta as atividades curriculares obrigatórias que o aluno deverá desenvolver, porém sem especificar qual período, o que, em parte, é escolha do aluno.

Tabela 10 - Atividades curriculares obrigatórias

Nome	Horas-aula	Horas	Pré-requisitos
Estágio Curricular Supervisionado	360	300	2750 На
Atividades Complementares	225	187,5	

4.6 Avaliação do processo de ensino-aprendizagem

A forma como é tratada a avaliação vai além de um processo meramente técnico, refletindo e incluindo valores e princípios presentes nos projetos pedagógicos de cada curso do CEFET-MG, e expressando a concepção de educação, de escola e de sociedade que se pretende para a Instituição. Formalmente, a avaliação no CEFET-MG é constituída por um sistema global que integra o âmbito institucional (autoavaliação ou avaliação institucional) e o âmbito acadêmico propriamente dito (avaliação escolar), fazendo uso de instrumentos próprios em cada um deles, mas mantendo estreita articulação entre si. Como um processo dinâmico, esse sistema orienta-se a partir de alguns princípios, cuja base são aqueles mais gerais expressos nesse documento e que levam em conta:

- (a) o caráter contínuo, cumulativo e dinâmico dos processos de avaliação;
- (b) a diversidade dos processos educacionais no CEFET-MG;
- (c) a reciprocidade entre professor, aluno e a diversificação dos instrumentos de avaliação articulados ao projeto de cada curso;
 - (d) o planejamento e a intencionalidade da avaliação escolar;
- (e) o aprimoramento dos processos de ensino-aprendizagem a partir da análise dos dados obtidos de avaliações;
 - (f) a ampla divulgação dos resultados das avaliações e de suas análises.

No tocante à avaliação do rendimento escolar e os critérios de aprovação na disciplina, eles deverão ser norteados pelos princípios do Projeto Pedagógico Institucional do CEFET-MG (2005-2010), obedecendo às Normas Acadêmicas vigentes (artigos 60 ao 81). O sistema de avaliação a ser adotado deverá ser apresentado por cada professor aos alunos por meio do Plano Didático semestral, sendo que sua distribuição deverá se dar ao longo do semestre, não podendo nenhum instrumento de avaliação corresponder a mais de 40% dos pontos totais da disciplina. Alguns dos instrumentos de avaliação propostos para o Curso de Engenharia de Automação Industrial são: provas teóricas e práticas; trabalhos em grupo; trabalhos individuais; seminários; relatórios técnicos; visitas técnicas.

4.7 Políticas institucionais no âmbito do curso

4.7.1 Políticas de ensino, pesquisa e extensão implantadas no âmbito do curso

No CEFET-MG, os estudantes da graduação têm oportunidade de participar de várias atividades de ensino, pesquisa e extensão³⁰ que podem ser computadas como carga horária de atividades complementares prevista na matriz curricular, ampliando os horizontes da formação profissional. O Quadro 3 lista os principais programas e projetos da Instituição.

Quadro 3 - Principais programas e projetos da Instituição

Programas e projetos	Setor Responsável
Programa de Mobilidade Acadêmica	Secretarias de Relações Internacionais
Internacional - Convênio CEFET-	
MG/Instituições Estrangeiras	
Programa CEFET-MG/ANDIFES de	Diretoria de Graduação
Mobilidade	
Programa IAESTE de Estágio Remunerado	Secretarias de Relações Internacionais
no Exterior	
Programa Institucional de Bolsas de	Diretoria de Pesquisa e Pós-graduação
Iniciação Científica (PIBIC)	
Programa de Educação Tutorial (PET)	Diretoria de Graduação
Programa de Monitoria	Diretoria de Graduação/Departamentos/
	Coord. de Cursos/ Coord. Pedagógicas
Programa de Extensão e Desenvolvimento	Diretoria de Extensão
Comunitário	
Bolsas de Extensão	Diretoria de Extensão
Núcleo de Engenharia Aplicada a	Diretoria de Extensão
Competições (NEAC)	

• Programas de Mobilidade Acadêmica Internacional

O CEFET-MG mantém convênios com várias instituições estrangeiras, proporcionando opções de intercâmbio acadêmico e profissional para alunos, professores e técnico-administrativos. Por intermédio desses convênios, a instituição objetiva tornar possível e facilitar o intercâmbio de nossos alunos e servidores com instituições estrangeiras, além de receber e orientar estrangeiros interessados em desenvolver estudos ou pesquisas na Instituição.

Programas, Projetos e Ações de Pesquisa e Extensão, 2016 Disponível em: http://www.cefetmg.br/galeria/guia-academico/Guia-Graduacao-A5-CEFETMG-2016-2-Digital.pdf, >p.3539

• Programa CEFET-MG/ANDIFES de Mobilidade Acadêmica Nacional

O CEFET-MG possui convênio com o conjunto das Instituições Federais que compõem a Associação Nacional dos Dirigentes das Instituições Federais de Ensino Superior (ANDIFES), com o objetivo de propiciar aos estudantes de graduação a realização de estudos, em qualquer destas instituições, por um período limitado. O Programa CEFET-MG/ANDIFES de Mobilidade Acadêmica Nacional tem como finalidade viabilizar a mobilidade de estudantes e intercâmbio interinstitucional mediante a concessão de bolsas aos estudantes participantes, com recursos oriundos do Banco Santander/Santander Universidades, sob gestão da Associação Nacional de Dirigentes das Instituições Federais de Ensino Superior (ANDIFES). A seleção é feita, semestralmente, por editais publicados no sítio eletrônico do CEFET-MG e no Portal da Diretoria de Graduação³¹.

A partir de acordo celebrado com a Associação Brasileira de Intercâmbio Profissional e Estudantil (ABIPE), o CEFET-MG seleciona alunos de cursos de graduação para participação em programas de estágio remunerado no exterior. A seleção é feita, anualmente, por edital publicado pela Secretaria de Relações Internacionais.³²

• Programa Institucional de Bolsas de Iniciação Científica (PIBIC)

O PIBIC é um programa voltado para a iniciação à pesquisa de alunos de graduação e tem como principais objetivos:

- i) possibilitar maior interação entre a graduação e a pós-graduação;
- ii) apoiar a execução de projetos de pesquisa por meio da concessão de bolsas de iniciação científica;
- iii) contribuir para a formação de recursos humanos para a pesquisa;
- iv) proporcionar ao bolsista a aprendizagem de técnicas e métodos de pesquisa, bem como estimular o desenvolvimento do pensar cientificamente e da criatividade, decorrentes das condições criadas pelo confronto direto com os problemas de pesquisa. As chamadas de bolsas

³² Programas, Projetos e Ações de Pesquisa e Extensão, 2016 Disponível em:

Projeto Pedagógico do Curso de Engenharia de Automação Industrial — Campus Araxá — Projeto de Reestruturação do Curso, 2020. Centro Federal de Educação Tecnológica de Minas Gerais Av. Ministro Olavo Drummond, 25 - Bairro São Geraldo - Araxá — MG - CEP: 38.180.510

³¹ Disponível em http://www.graduacao.cefetmg.br/.

http://www.cefetmg.br/galeria/guia-academico/Guia Graduacao A5 CEFETMG 2016 2 Digital.pdf> p.35-39.

de PIBIC são feitas por editais publicados regularmente no Portal da Diretoria de Pesquisa e Pós-graduação (DPPG) do CEFET-MG. ³³

Programa Institucional de Bolsas de Iniciação em Desenvolvimento Tecnológico e Inovação (PIBITI)

O PIBITI é um programa que visa estimular estudantes do ensino profissional técnico de nível médio ou do ensino superior ao desenvolvimento e transferência de novas tecnologias e inovação. Um dos objetivos do PIBITI é proporcionar ao bolsista, orientado por pesquisador qualificado, a aprendizagem de técnicas e métodos de pesquisa tecnológica, bem como estimular o desenvolvimento do pensar tecnológico e da criatividade, decorrentes das condições criadas pelo confronto direto com os problemas de pesquisa. As chamadas de bolsas de PIBIT são feitas por editais publicados regularmente no Portal da Diretoria de Pesquisa e Pósgraduação (DPPG).³⁴

• Programa de Monitoria

A monitoria é uma atividade acadêmica, no âmbito da graduação, que pretende oferecer ao aluno (monitor) experiência de iniciação à docência. É uma atividade complementar à formação do aluno que poderá ser aproveitada para integralização do currículo sempre que isso estiver previsto pelo Projeto Pedagógico do Curso, nos termos da Resolução CEPE 24/08, de 11 de abril de 2008 e CEPE 39/10, de 18 de novembro de 2010.

- O Programa de Monitoria tem por objetivos:
- i) contribuir para o desenvolvimento de aptidões para a docência do aluno;
- ii) contribuir para a formação acadêmica do aluno;
- iii) possibilitar o compartilhamento de conhecimentos com outros alunos;
- iv) promover a cooperação entre os corpos discente e docente para a melhoria do ensino;
- v) contribuir para minimizar os problemas de repetência, evasão e de falta de motivação dos alunos.

Para ser monitor, o aluno participa de um processo seletivo regido por edital elaborado pelo Departamento ao qual a disciplina é filiada, podendo concorrer à bolsa de monitoria alunos regularmente matriculados em um dos cursos de graduação do CEFET-MG, que comprovem

_

³³ Programas, Projetos e Ações de Pesquisa e Extensão, 2016 Disponível em:

http://www.cefetmg.br/galeria/guia academico/Guia Graduacao A5 CEFETMG 2016 2 Digital.pdf, p.35-39.

³⁴ Idem

terem sido aprovados na disciplina, ou em disciplina equivalente, com média igual ou superior a 70 (setenta).³⁵

• Programa de Extensão e Desenvolvimento Comunitário

A Extensão é um meio de difusão, socialização e democratização do conhecimento produzido e existente no CEFET-MG. Dessa forma, ela deve ser realizada visando à indissociabilidade com o ensino e a pesquisa e a relação bidirecional com a sociedade. São as demandas sociais que permitem a democratização das informações, o desenvolvimento social e tecnológico e a melhoria da qualidade de vida da população. Uma atividade de Extensão pode nascer a partir de uma demanda interna ou externa, podendo constituir-se de: programa, projeto tecnológico, projeto social, curso, evento, prestação de serviços, empreendedorismo e inovação tecnológica. A validação da participação do aluno em projetos de extensão independe da forma como ele atua; remunerada ou gratuita, ambas permitem o fornecimento de certificado de participação, desde que a atividade tenha sido registrada na Diretoria de Extensão e Desenvolvimento Comunitário.³⁶

• Programa Bolsas de Extensão

O Programa Bolsa de Extensão tem por objetivo fomentar a participação de alunos em atividades de extensão no CEFET-MG. Para participar de atividade de extensão, o aluno deve buscar informações sobre atividades em andamento ou em fase de elaboração na Coordenação de Extensão do Campus ou na Coordenação do Curso em que está matriculado.³⁷

• Núcleo de Engenharia Aplicada a Competições (NEAC)

O NEAC foi criado para apoiar a realização de projetos, montagens e disputa de competições por parte dos alunos do CEFET-MG e tem como prioridade contribuir para o desenvolvimento de projetos e trabalhos de Engenharia em competições de âmbito nacional e

-

³⁵ O Regulamento de Atividades de Monitoria dos Cursos de Graduação do CEFET-MG foi aprovado pela Resolução CGRAD – 023/08, de 24 de setembro de 2008, e está disponível no Portal da DIRGRAD http://www.graduacao.cefetmg.br/>.

³⁶ Programas, Projetos e Ações de Pesquisa e Extensão, 2016. Disponível em:

http://www.cefetmg.br/galeria/guia academico/Guia Graduacao A5 CEFETMG 2016 2 Digital.pdf,> p.35-39

³⁷ Idem

internacional. O Núcleo subsidia projetos e atividades de laboratórios e oficinas, produção de protótipos industriais, planejamento e execução de projetos relativos a disciplinas curriculares.

Além disso, é responsável pela participação dos alunos em competições promovidas pela *Society of Automotive Engineering – SAE*, tais como: Mini Baja, Fórmula SAE e *Aerodesign*.³⁸

De acordo com o Regulamento Geral das atividades de Pesquisa e Extensão – Resolução CEPE-20/15, de 9 de outubro de 2015, as atividades de pesquisa no CEFET-MG são desenvolvidas por seus servidores do quadro permanente ativos e inativos, alunos dos cursos técnicos de nível médio, graduação e de pós-graduação, bem como por pesquisadores colaboradores, tais como aqueles vinculados a outros órgãos públicos e privados, nacionais ou internacionais, ou ainda a programas de estágio e pós-doutorado.

Programa de Educação Tutorial – PET

Regulamentado pela Lei Nº 11.180, de 23 de setembro de 2005, o PET destina-se a apoiar grupos de alunos que demonstrem potencial interesse e habilidades destacadas em cursos de graduação das Instituições de Ensino Superior – IES. O apoio pode ser concedido ao estudante bolsista até a conclusão da sua graduação e ao professor tutor por três anos, podendo ser prorrogável por iguais períodos, conforme parecer da Comissão de Avaliação do PET. Além disso, o MEC custeia as atividades dos grupos repassando, semestralmente, valor equivalente a uma bolsa por aluno participante.

O Programa é composto por grupos tutoriais de aprendizagem e busca propiciar aos alunos, sob orientação de um professor tutor, condições para realização de atividades extracurriculares, que complementem a sua formação acadêmica, procurando atender mais plenamente às necessidades do próprio curso de graduação e/ou ampliar e aprofundar os objetivos e os conteúdos programáticos que integram sua estrutura curricular. Espera-se assim, proporcionar a melhoria da qualidade acadêmica dos cursos de graduação apoiados pelo PET.

As atividades extracurriculares que compõem o Programa têm como objetivo garantir aos alunos do curso oportunidades de vivenciar experiências não presentes em estruturas curriculares convencionais, visando a sua formação global e favorecendo a formação acadêmica, tanto para integração no mercado profissional quanto para o desenvolvimento de estudos em programas de pós-graduação.

³⁸ Ibidem

O PET é um programa de longo prazo que visa realizar, dentro da universidade brasileira, o modelo de indissociabilidade do ensino, pesquisa e extensão. Assim, além de um incentivo à melhoria da graduação, o PET pretende estimular a criação de um modelo pedagógico para a universidade, de acordo com os princípios estabelecidos na Constituição Brasileira e na Lei de Diretrizes e Bases da Educação (LDB).

4.7.2 Políticas de apoio discente

O CEFET-MG desenvolve programas, projetos e ações que têm por finalidade promover a permanência dos estudantes na Instituição por meio de apoio socioeconômico, psicossocial e educacional.³⁹ O Quadro 4 descreve quais são esses programas, projetos e ações e os setores responsáveis pela gestão dos mesmos.

Quadro 4 - Programas desenvolvidos e setores responsáveis

Programas, projetos e ações	Setor Responsável
Programa de Auxílio à Participação de	Directories Especializades
Discentes em Eventos	Diretorias Especializadas
Programa de Alimentação	Coordenações de Política Estudantil
Programa Bolsa Permanência	Coordenações de Política Estudantil
Programa Bolsa Complementação	Coordonações de Política Estudentil
Educacional	Coordenações de Política Estudantil
Programa Bolsa Emergencial	Coordenações de Política Estudantil
Acompanhamento Psicossocial	Coordenações de Política Estudantil
Ações socioeducativas, de prevenção e	Coordonações do Político Estudentil
pesquisa	Coordenações de Política Estudantil
Monitoria	Diretoria de Graduação/Departamentos/
	Coord. de Cursos/ Coord. Pedagógicas
Acompanhamento Pedagógico	Coordenações Pedagógicas

• Programa de Auxílio à Participação de Discentes em Eventos

O Programa de Auxílio à Participação de Discentes em Eventos tem por objetivo promover a participação de discentes dos níveis técnico, graduação e pós-graduação em eventos de caráter técnico-científico, competição acadêmica, esportivo e cultural. Esses eventos são assim definidos:

http://www.cefetmg.br/galeria/guia academico/Guia Graduacao A5 CEFETMG 2016 2 Digital.pdf, p.31-34.

³⁹ Programas, Projetos e Ações de apoio aos estudantes. Disponível em:

a) **técnico-científico** – aqueles que visam à divulgação de resultados de pesquisa, difusão de tecnologia e/ou atividades que reúnam profissionais com expertise em uma determinada área

do conhecimento para transmissão de informações de interesse comum aos participantes. Essas

atividades são comumente denominadas como congresso, seminário, simpósio, colóquio,

conferência e outras de natureza similar;

b) competição acadêmica – aqueles cujo objetivo é promover a disputa, individual ou coletiva,

acerca do domínio de conhecimentos acadêmicos e/ou projetos aplicados desenvolvidos no

âmbito dos grupos de competição do CEFET-MG;

c) esportivo – aqueles cujas atividades estejam ligadas a práticas esportivas com regras

definidas e reconhecidas pelas entidades (federações e confederações) que as regulamentam;

d) cultural – aqueles cujas ações objetivam valorizar e incentivar manifestações artísticas,

literárias e resgate histórico de costumes, de forma que suas atividades contribuam para a

complementação formativa e pedagógica. O Programa concede auxílio financeiro para

subsidiar gastos relativos à compra de passagens aéreas e/ou terrestres, à hospedagem, à

alimentação, à taxa de inscrição e à confecção de material de comunicação visual. A solicitação

de auxílio financeiro poderá ser deferida, total ou parcialmente, ou indeferida, em conformidade

com os critérios estabelecidos em Regulamento. A concessão também dependerá da

disponibilidade orçamentária, bem como do equilíbrio financeiro da Instituição. O

Regulamento do Programa de Auxílio à Participação de Discentes em Eventos foi aprovado

pela Resolução DIR – 158/13, de 4 de março de 2013, e está disponível no Portal da Diretoria

de Planejamento e Gestão.

Programa de Alimentação

O Programa de Alimentação tem por objetivo contribuir diretamente para a melhoria

das condições de permanência de estudantes e servidores na Instituição e, indiretamente, para

a melhoria da qualidade da educação oferecida no CEFET-MG. Este Programa é oferecido

através do Restaurante Estudantil, porém nos *campi* onde ainda não há restaurante, é oferecida

a Bolsa Alimentação.

Programa Bolsa Permanência

Destinado a estudantes com dificuldades para arcar com suas despesas, comprometendo

sua permanência no curso, o programa oferece bolsas mensais durante o ano, considerando os

dias letivos de cada mês.

134

Programa Bolsa de Complementação Educacional

Destinado a estudantes que, além da necessidade de arcar com suas despesas, possuem interesse em complementar sua aprendizagem. O bolsista deverá ter disponibilidade de atuar 20 horas semanais em atividades/projetos correlatos ao seu curso.

• Programa Bolsa Emergencial

Destinado ao estudante que se encontra em situação de crise momentânea que possa comprometer o seu aproveitamento escolar naquele mês. Havendo a necessidade de recebimento contínuo, o discente deverá solicitar o auxílio através do Programa de Bolsa Permanência.

• Acompanhamento Psicossocial

Programa que articula os eixos da permanência e da formação integral dos estudantes, visando a fomentar a formação humana, o exercício crítico da cidadania, além de identificar e intervir nas demandas dos estudantes que se encontram vulneráveis aos processos de inclusão e de permanência no ambiente acadêmico. Esse atendimento é realizado em qualquer época do ano.

• Ações socioeducativas, de prevenção e pesquisa

Abordagem de temáticas da juventude, mundo do trabalho, sexualidade, saúde física e mental, diversidade, meio ambiente, bem como o incentivo à participação dos estudantes em atividades de pesquisa e extensão. Essas ações são direcionadas a todos os estudantes, de acordo com o planejamento e período divulgado em cada unidade.

• Acompanhamento Pedagógico

O acompanhamento pedagógico é realizado pelas Coordenações Pedagógicas, que proporcionam atendimento aos estudantes, individual ou em grupo, com o objetivo de orientálos sobre: a organização e funcionamento CEFET-MG; procedimentos acadêmicos; métodos e técnicas de estudos.

O CEFET-MG encontra-se em processo de implementação das novas Diretrizes Curriculares para os Cursos de Engenharia. No entanto, a política institucional referente ao acompanhamento pedagógico atende ao disposto na Resolução MEC/CES nº 2/2019, de 24 de abril de 2019, especificamente em seu art. 7°., que aborda a diminuição da retenção e da evasão,

o acompanhamento pedagógico do curso deve prever os sistemas de acolhimento e nivelamento, ao considerar:

"I - as necessidades de conhecimentos básicos que são pré-requisitos para o ingresso nas atividades do curso de graduação em Engenharia;

II - a preparação pedagógica e psicopedagógica para o acompanhamento das atividades do curso de graduação em Engenharia;

III - a orientação para o ingressante, visando melhorar as suas condições de permanência no ambiente da educação superior."

Para um tratamento mais adequado das questões individuais e/ou coletivas referentes ao processo de formação escolar, o atendimento aos estudantes pelas Coordenações Pedagógicas pode ser realizado de forma integrada com outros setores.

4.8 Turno de implantação do curso

O Projeto Pedagógico foi reestruturado de forma tal que a estrutura curricular seja implantada em período integral, atendendo as normas vigentes no CEFET-MG, de modo a propiciar a participação do aluno em projetos e programas institucionais.

4.9 Forma de ingresso, número de vagas e periodicidade da oferta

O processo seletivo para admissão de novos alunos para o curso de Engenharia de Automação Industrial é realizado anualmente, segundo as normas para realização de processos seletivos para o ensino superior em vigor no CEFET-MG via COPEVE. Outras possíveis formas de ingresso são através de Processos Seletivos para o preenchimento de Vagas Remanescentes, nas modalidades Obtenção de Novo Título, destinada a alunos que já possuem um curso de graduação; Reingresso e Reopção de Curso, para alunos que cursam outra graduação no CEFET-MG; e Transferência Externa, por meio de avaliação específica realizada pelo CEFET-MG.

Considerando a estrutura física disponível de salas de aula e laboratórios e o corpo docente atual, o número de vagas a ser ofertado anualmente à comunidade é de 40 (quarenta). Para uma equalização do curso noturno com o integral, as disciplinas comuns deverão ser ofertadas no noturno, tendo em vista não prejudicar os alunos dperíodo.

5 MONITORAMENTO DO PROJETO PEDAGÓGICO DO CURSO

Para elaboração da reestruturação de todo o Projeto Político-Pedagógico do Curso de Graduação em Engenharia de Automação Industrial, buscou-se manter conformidade com as propostas de Projetos Político-Pedagógicos das novas estruturas dos cursos de Engenharia do CEFET-MG. Dessa forma, o monitoramento do projeto deverá ser normalizado pelo Colegiado de Curso, de forma provisória durante o processo de implantação do Curso no período integral, e após este período, deverá ser instituído de forma permanente. Nesta normatização devem constar, em especial, os seguintes itens:

- Priorizar a autoavaliação interna do curso, abrangendo avaliação da estrutura, do currículo e das práticas pedagógicas, dos docentes e dos discentes, dando um caráter mais de acompanhamento e correção de rumos a todo esse sistema de avaliação;
- Dar continuidade à implantação do sistema de avaliação ACQG (Avaliação do Controle da Qualidade da Graduação) que, além de preparar os disicentes para o ENEM, consiste em ferramenta de avaliação da aprendizagem. Como a mesma avaliação é aplicada para todos os períodos, os gráficos com nível de acerto em cada questão sevirão de indicativo da qualidade do ensino, devendo ser apresentados e discutidos com todos os docentes;
- Considerar propostas de nivelamento, com acompanhamento mais cuidadoso dos alunos dos primeiros períodos, garantindo a construção das habilidades básicas de um estudante de ensino superior de engenharia;
- Acompanhar o sistema de avaliação do aluno, estabelecendo critérios e normas;
- Apontar possíveis mecanismos de recuperação, por meio de acompanhamento mais próximo das disciplinas, alunos e professores que tenham sentido dificuldades nos semestres anteriores;
- Propor qualificação pedagógica de docentes, com participação em cursos, oficinas, seminários relativos à elaboração de planejamento de atividades diversas de avaliação e de dinamização da sala de aula, de técnicas diversas como a de aula expositiva, projetos, tutoria, uso de ferramentas digitais, etc.

5.1 Colegiado do Curso de Engenharia de Automação Industrial

O Colegiado do Curso de Engenharia de Automação Industrial está estruturado de acordo com o Regulamento dos Colegiados de Cursos do CEFET-MG (RESOLUÇÃO CD nº 34/2003). Em relação às atribuições dos Colegiados, o Regulamento aponta como atribuições as seguintes:

- Avaliar e atualizar continuamente o projeto político-pedagógico do curso;
- Conduzir os trabalhos de reestruturação curricular do curso, para aprovação nos Colegiados Superiores, sempre que necessário;
- Estabelecer formas de acompanhamento e avaliação do curso;
- Proceder ao acompanhamento e avaliação do curso, envolvendo os diversos segmentos inseridos no processo;
- Recomendar aos Departamentos a indicação ou substituição de docentes, quando necessário;
 - Elaborar proposta do calendário anual do curso;
 - Apreciar convênios, no âmbito acadêmico, referentes ao curso;
- Apreciar propostas relativas a taxas, contribuições e emolumentos a serem cobrados pelo curso;
- Deliberar, conclusivamente, sobre a alocação de recursos destinados ao Curso, inclusive em sua fase de planejamento;
- Decidir, em primeira instância, as questões referentes à matrícula, à reopção, à dispensa de disciplina, à transferência e à obtenção de novo título, bem como as representações e aos recursos apresentados por docentes e discentes;
- Analisar os casos de infração disciplinar e, quando necessário, encaminhar ao órgão competente;
 - Propor e/ou avaliar as atividades extracurriculares do curso;
- Propor alterações no Regulamento dos Colegiados de Cursos de Engenharia, para posterior aprovação dos Conselhos Superiores;
 - Exercer a fiscalização e o controle do cumprimento de suas decisões;
- Solucionar os casos omissos neste Regulamento e as dúvidas que porventura surgirem na sua aplicação.

Quanto à sua composição, cada Colegiado de Curso de Engenharia deve ter a seguinte composição:

- i) Coordenador do Curso, como presidente;
- ii) Representantes dos docentes, que ministram disciplinas profissionalizantes na área de conhecimento específica do curso;
- iii) Representantes dos docentes que ministram as demais disciplinas do curso;
- iv) Representante dos alunos do Curso.

5.2 Atuação do Núcleo Docente Estruturante (NDE)

Em reunião do Colegiado, realizada em 26 de maio de 2009, foi definido o primeiro Núcleo Docente Estruturante - NDE do Curso de Engenharia de Automação Industrial do CEFET-MG/ Unidade de Araxá. Recetemente, em função da evasão de alguns membros, houve a recomposição do NDE, por meio da Portaria 01/20 da DIRGRAD, de 17/02/20.

O NDE é órgão consultivo e de apoio ao Colegiado em todas as atividades relacionadas ao Projeto Pedagógico, tais como implantação, implementação, desenvolvimento, consolidação e reestruturação, e assessoramento sobre matéria de natureza acadêmica.

Consoante ao Parecer CONAES sobre o Núcelo Docente Estruturante, um bom curso de graduação tem alguns membros de seu corpo docente que ajudam a construir a sua identidade. Portanto, o reconhecimento do NDE como órgão consultivo de grande importância tem em vista a consolidação e a constante atualização do PPC do curso, evitando que ele se torne peça meramente documental. Assim sendo, a proposta de reestruturação do PPC foi discutida em conjunto com esse grupo de docentes envolvidos com a sua formulação, consolidação e desenvolvimento, por meio de reuniões para discussão das sugestões e indicadores levantados pela comissão responsável pela reestruturação, e apresentação de sugestões por parte do NDE.

Suas atribuições, ao longo do curso, consistem em:

- i) Contribuir para a consolidação do perfil profissional do egresso do curso;
- ii) propor a integração curricular interdisciplinar entre as diferentes atividades de ensino constantes na matriz curricular;
- iii) indicar formas de incentivo ao desenvolvimento de linhas de pesquisa e extensão:
- iv) zelar pelo cumprimento das Diretrizes Curriculares Nacionais para os cursos de graduação.

Resta esclarecer que, além do NDE, o projeto de Reestruturação do Curso de Engenharia de Automação Industrial foi analisado em conjunto com os demais departamentos e coordenações, tendo em vista a averiguação do impacto do aumento de carga horária (PPC 2020) em relação à matriz do curso noturno (PPC 2005).

5.3 Atuação do Coordenador do Curso

Segundo a Associação Brasileira de Mantenedoras de Ensino Superior (ABMES), o coordenador de curso é, por vezes, tomado como o gerente ou o dono do curso (ABMES, s/d). Segundo essa perspectiva, o coordenador é o "responsável pela gestão e pela qualidade intrínseca do curso, no mais amplo sentido" do que seja qualidade (ABMES, s/d, p. 3).

O coordenador é responsável pela continuidade das atividades do curso, assim como por coordenar e facilitar processos de mudança no curso. Dessa forma, suas funções podem ser categorizadas em três áreas que englobam funções políticas, administrativas e institucionais, e acadêmicas.

De acordo com a Resolução CEPE-21/09, de 9 de julho de 2009, que "aprova o Regulamento dos Colegiados de Cursos de Graduação." SEÇÃO II – Do Coordenador de Curso Art. 5°, o Coordenador de Curso de Graduação tem as seguintes atribuições:

I – Convocar e presidir as reuniões do Colegiado de Curso de Graduação;

II – Cumprir e fazer cumprir, no âmbito de sua competência, as determinações contidas no
 Estatuto, no Regimento Geral, bem como as normas editadas pelos Órgãos Colegiados
 Superiores, pelos Órgãos Colegiados Especializados e pelo Colegiado de Curso de Graduação;

III – Tomar decisões ad referendum do Colegiado de Curso, em situações de emergência;

IV – Apoiar, coordenar e supervisionar a realização das atividades administrativas e acadêmicas do Curso;

V – Encaminhar aos órgãos competentes as propostas e solicitações que dependerem de aprovação dos mesmos;

VI – Acompanhar e tomar as medidas necessárias para assegurar a elaboração e posterior encaminhamento às instâncias competentes, do relatório de atividades acadêmicas do Curso;

VII – Remeter à Diretoria de Graduação relatórios e informações sobre as atividades do Curso, de acordo com as instruções daquele órgão;

VIII - Tornar públicas as deliberações e resoluções emanadas pelo Colegiado de Curso, os

relatórios de acompanhamento e avaliação emitidos por órgãos externos e demais informações

relativas ao Curso de Graduação;

IX – Supervisionar as atividades relativas ao registro e controle acadêmico dos alunos do Curso

de Graduação;

X – Tomar as providências necessárias para a recomposição do Colegiado de Curso;

XI – Propor à Diretoria da Unidade e/ou Diretoria de Graduação medidas necessárias ao bom

desenvolvimento do Curso;

XII – Representar o Colegiado de Curso de Graduação perante órgãos internos e externos ao

CEFET-MG;

XIII – Exercer outras atribuições explicitamente delegadas pelo Colegiado de Curso de

Graduação ou por outros órgãos e instâncias competentes.

Parágrafo único – As atribuições relacionadas nesse artigo deverão ser exercidas de forma

complementar e subsidiária às deliberações do Colegiado de Curso e nunca de forma

competitiva ou substitutiva a tais deliberações.

Art. 6º – O Coordenador de Curso de Graduação é o responsável formal pelo Curso perante o

CEFET-MG.

Art. 7º – Das decisões do Coordenador de Curso de Graduação caberá recurso ao Colegiado de

Curso de Graduação.

SEÇÃO III – Do Sub-Coordenador de Curso

Art. 8º – O Sub-Coordenador de Curso de Graduação tem as seguintes atribuições:

I – Substituir o Coordenador de Curso de Graduação em seus impedimentos eventuais ou legais;

II - Atuar como membro suplente do Coordenador de Curso de Graduação no Colegiado de

Curso de Graduação;

III - Auxiliar o Coordenador de Curso de Graduação na consecução de suas tarefas e no

desenvolvimento de ações;

IV – Cumprir e fazer cumprir, no âmbito de sua competência, as determinações contidas no Estatuto, no Regimento Geral, bem como as normas editadas pelos Órgãos Colegiados Superiores, pelos Órgãos Colegiados Especializados e pelo Colegiado de Curso de Graduação; V – Cumprir as demais atribuições explicitamente delegadas pelo Colegiado de Curso de Graduação ou pelo Coordenador de Curso de Graduação.

5.3.1 Plano de trabalho do Coordenador do Curso de Engenharia de Automação Industrial

- 1) Atendimento a alunos:
 - ajuste de matrícula, matrícula especial, trancamento, quebra de pré-requisistos, prováveis formandos;
 - abertura e distribuição de processos de dispensa de disciplina.
 - Aproveitamento de estudos;
 - Mobilidade acadêmica.
- 2) Atendimento a docentes;
- 3) Atualização de planos de ensino e didático;
- 4) Atualização do site do Curso, utilizado como ferramenta de informação aos discentes;
- 5) Aprovação da oferta do Curso em período integral, a partir de 2020/1, bem como da matriz curricular do 1º período, com aquiescência do Colegiado do Curso;
- 6) Aprovação do calendário escolar semestral;
- Distribuição de aulas e elaboração de horários semestralmente, em conjunto com o Departamento de Eletromecânica;
- 8) Implementação de ações para o ENADE:
 - Implementação do sistema de avaliação ACQG Avaliação e Controle da Qualidade da Graduação, tendo em vista preparação dos alunos para a prova do ENADE em todos os períodos do curso;
 - Criação de disciplina optativa para revisão dos conteúdos de todo o curso.
- 9) Aprovações no Colegiado do Curso:
 - Cronograma de apresentação e bancas de TCC I e II;
 - Disciplinas optativas a serem ofertadas semestralmente;
 - Equivalência de disciplinas dos cursos de Engenharia de Automação Industrial e Engenharia de Minas;

- Requerimentos de alunos (aproveitamento de estudos, pré-requisito, convalidação de estágio).
- 10) Elaboração e publicação de Resoluções emandas do Colegiado do Curso;
- 11) Elaboração em conjunto com o Departamento de Eletromecânica de editais de monitoria;
- 12) Reestruturação do Curso:
 - Ajustes no PPC reestruturado em consonância com as sugestões da Comissão de Análise da CGRAD.
- 13) Recomposição do NDE com inclusão de novos membros;
- 14) Recomposição dos Coordenadores de Eixo;
- 15) Vagas remanescentes:
 - Levantamento de vagas remanescentes;
 - Estabelecimento de critérios para realização de entrevistas no processo de seleção de candidatos à obtenção de novo título.
- 16) Participação em *worshop* da graduação e no fórum de coordenadores do CEFET-MG, órgão colegiado consultivo e de aprimoramento da prática da coordenação.
- 17) Convocação e coordenação de reuniões periódicas com:
 - Colegiado do Curso
 - Coordenação do Curso
 - Coordenadores de Eixo
 - NDE
 - Comissão de Reestruturação do PPC.

5.4 Autoavaliação institucional e avaliação externa do curso

O CEFET-MG conta com uma Comissão Permanente de Avaliação (CPA), cuja proposta é realizar a avaliação institucional com fulcro na Lei 10.861/2004, de 14 de abril de 2004, que institui o Sistema Nacional de Avaliação da Educação Superior (SINAES) e que determina em seu artigo 11 a criação de Comissão Própria de Avaliação (CPA) com a função, entre outras, de coordenar o processo de autoavaliação institucional. Assim, a CPA é parte da política de avaliação do ensino superior, ao lado das avaliações externas da instituição e dos cursos, bem como do Enade.

A Comissão Permanente de Avaliação (CPA) do CEFET-MG foi instituída pela Portaria DIR-138/04, de 16 de abril de 2004. A Comissão constituída por 11 (onze) membros:

- a) 4 (quatro) servidores docentes, um dos quais Coordenador de Curso de Graduação;
- b) 2 (dois) servidores técnico-administrativos;
- c) 2 (dois) representantes do corpo discente, indicados pelo órgão de representação estudantil;
- d) 2 (dois) representantes da sociedade civil organizada, sendo um representante dos trabalhadores e um do conselho que abrange a grande maioria dos cursos oferecidos pelo CEFET-MG;
- e) 1 (um) servidor(a) do CEFET-MG, designado(a) pelo Diretor-Geral.

Em 2009, a estrutura da CPA foi modificada. A Portaria DIR-138/04, de 16 de abril de 2004, foi substituída pela Portaria DIR 452/2009, de 23 de junho de 2009. Mediante essa portaria, a CPA passou a ser composta da seguinte forma:

- a) 4 (quatro) servidores docentes, um dos quais Coordenador de Curso de Graduação;
- b) 2 (dois) servidores técnico-administrativos;
- c) 2 (dois) representantes do corpo discente, indicados pelo órgão de representação estudantil;
- d) 2 (dois) representantes da sociedade civil organizada;
- e) Coordenador Geral de Avaliação de Ensino de Graduação;
- f) Coordenador Geral de Avaliação de Educação Profissional e Tecnológica;
- g) 1 (um) servidor(a) do CEFET-MG, designado(a) pelo Diretor Geral.

No âmbito do curso de Engenharia de Automação Industrial, levam-se em consideração os levantamentos realizados pela CPA, os cadernos do Enade, bem como os relatórios de avaliação externa. Todos esses relatórios são objeto de discussão pelo NDE do curso. Essas discussões, junto à discussão das avaliações da aprendizagem realizada pelos professores, têm como objetivo o aprimoramento do currículo do curso, sendo a reestruturação proposta uma das consequências desse permanente debate.

6 IMPLANTAÇÃO DO PROJETO PEDAGÓGICO DO CURSO

Neste item, apresentam-se as condições necessárias à implantação do projeto pedagógico do curso após a reestruturação.

6.1 Plano de reestruturação curricular

Para implantação da reestruturação curricular, propomos a oferta dos dois projetos pedagógicos simultaneamente no Curso de Engenharia de Automação Industrial, quais sejam o projeto reestruturado com início previsto para 2020, e o projeto do currículo em andamento (ingressantes até o ano de 2019: PPC vigente desde 2005), semestre a semestre, visando à adaptação desses alunos. As matrizes da Tabela 11 descrevem as disciplinas dentro de cada período, no sentido de verificar a viabilidade dessa proposta.

O Colegiado do curso monitorará o processo de transição, de modo a:

- a) Verificar semestralmente os índices de aprovação no curso, propondo, se necessário, ofertar novamente disciplinas da matriz curricular anterior em que haja alunos reprovados;
- b) Não havendo possibilidade de oferta de disciplinas da matriz anterior, em função do número de alunos que ainda necessitem cursar, propor plano de estudo ao aluno, apontando as disciplinas da nova matriz curricular que poderão ser cursadas em substituição a disciplinas da matriz anterior, providenciando o processo de equivalência entre as disciplinas, informando-o à Secretaria de Registro Escolar.

Tabela 11 - Proposta de oferta dos currículos simultâneos, semestre a semestre, a partir de 2020

ANO 2020 – 1° Semestre										
1º período (PPC reestru	turado))	3º período (PPC 20	005)						
Disciplina	СН	Aulas/ semana	Disciplina	СН	Aulas/ semana					
Química Básica	25	2	Circuitos Elétricos I	30	2					
Lab. Química Básica	25	2	Laboratório de Circuitos Elétricos	30	2					
Cálculo I	75	6	Álgebra Linear	30	2					
Geometria Analítica e Álgebra Vetorial	75	6	Física II	60	4					
Contexto social e profissional	25	2	Física Experimental I	30	2					
Programação de Computadores I	25	2	Metrologia	30	2					

Lab. de Programação de Computadores I	25	2	Calculo III	60	4
Desenho Técnico	50	4	Cálculo Numérico	30	2
Introdução à Prática Experimental	12,5	1			

Em relação ao 1°. semestre de 2020, deve-se destacar:

- Há necessidade de sala de aula para 3 h-a em período integral (disciplinas: Introdução à Prática Experimental e Contexto Social e Profissional).
- Haverá liberação das salas de Desenho para 4 h-a no noturno.
- Há necessidade de sala de aula para 16 h-a no noturno (disciplinas: Cálculo I, GAAV, Química Básica e Programação de Computadores I).
- A ocupação de salas de aula passará de 20 h-a semanais, do 1º. período do curso noturno (PPC 2005), para 16 h-a com o PPC reestruturado, liberando salas de aula para 4 h-a no noturno.

ANO 2020 – 2° Semestre									
2º período (PPC reestru	turado))	4º período (PPC 20	05)					
Disciplina	СН	Aulas/ semana	Disciplina	СН	Aulas/ semana				
Física I	50	4	Circuitos Elétricos II	30	2				
Programação de Computadores II	25	2	Física III	60	4				
Laboratório de Programação de Computadores II	25	2	Conversão Eletromecânica de Energia	30	2				
Cálculo II	75	6	Laboratório de Conversão Eletromecânica de Energia	30	2				
Estatística	50	4	Cálculo Diferencial e Integral IV	60	4				
Ciência dos Materiais	25	2	Eletrônica Aplicada	60	4				
Projeto Técnico I	25	2	Laboratório de Eletrônica Aplicada	30	2				
Libras I	25	2	Física Experimental II	30	2				

Em relação ao 2°. semestre de 2020, importa destacar:

- Há necessidade de salas de aula para 12 h-a no período integral (disciplinas: Programação de Computadores II, Estatística, Ciência dos Materiais, Projeto Técnico I e Libras I).
- Há necessidade de salas de aula para 10 h-a no noturno (disciplinas: Cálculo II, Física I).
- A ocupação de salas de aula passará de 20 h-a semanais, do 2º. período do curso noturno (PPC 2005), para 10 h-a com o PPC reestruturado, liberando salas para 10 h-a no noturno.

ANO 2021 – 1° Semestre									
3º período (PPC reestru	turado))	5º período (PPC 2005)						
Disciplina	СН	Aulas/ semana	Disciplina	СН	Aulas/ semana				
Física II	50	4	Instrumentação Eletrônica	30	2				

Física Experimental I	25	2	Laboratório de Instrumentação Eletrônica	30	2
Cálculo III	50	4	Acionamentos Elétricos	60	4
Circuitos Elétricos I	25	2	Laboratório de Acionamentos Elétricos	30	2
Laboratório de Circuitos Elétricos I	25	2	Mecânica Geral	60	4
Metrologia	25	2	Fundamentos de Termodinâmica e Transferência de Calor	60	4
Álgebra Linear	50	4	Mecânica dos Fluidos	30	2
Estática	50	4			

Em relação ao 1º. semestre de 2021, deve-se destacar:

- Há necessidade de salas de aula para 6 h-a no período integral (disciplinas:
 Metrologia, Estática). O acumulado desde o início do curso será equivalente a 9 h-a.
- Haverá liberação de 4 h-a em laboratórios no noturno (disciplinas: Física experimental I e Laboratório de Circuitos Elétricos I).
- Há necessidade de salas de aula para 14 h-a no noturno (disciplinas: Física II, Cálculo III e Álgebra linear).
- A ocupação das salas passará de 20 h-a semanais, do 3º. período do curso noturno (PPC 2005), para 14 h-a com o PPC reestruturado, liberando salas para 6 h-a no noturno.

ANO 2021 – 2° Semestre									
4º período (PPC reestru	turado))	6º período (PPC 20	005)					
Disciplina	СН	Aulas/ semana	Disciplina	СН	Aulas/ semana				
Física III	50	4	Instrumentação, Controle e Automação	30	2				
Física Experimental II	25	2	Laboratório de Instrumentação, Controle e Automação	30	2				
Cálculo IV	50	4	Resistência dos Materiais	60	4				
Metodologia Científica	25	2	Controladores Lógico Programáveis	30	2				
Circuitos Elétricos II	25	2	Acionamentos Hidráulicos e Pneumáticos	60	4				
Resistência dos Materiais	50	4	Sistemas Digitais	60	4				
Métodos Numéricos Computacionais	50	4	Laboratório de Sistemas Digitais	30	2				
Introdução à Administração	25	2							
Libras II	25	2							

Em relação ao 2°. semestre de 2021, deve-se destacar:

- Há necessidade de salas de aula para 6 h-a no período integral (disciplinas: Metodologia Científica Introdução à Administração e Libras II). O acumulado desde o início do curso será equivalente a 12 h-a.
- Haverá liberação de 6 h-a em laboratórios no noturno (disciplinas: Física experimental II e Métodos Numéricos Computacionais).
- Há necessidade de salas de aula para 14 h-a no noturno (disciplinas: Física III, Cálculo IV, Circuitos Elétricos II e Resistência dos Materiais).
- A ocupação de salas de aula passará de 20 h-a semanais, do 4º. período do curso noturno (PPC 2005), para 14 h-a com o PPC reestruturado, liberando salas para 6 h-a no noturno.

ANO 2022 – 1° Semestre									
5º período (PPC reestru	turado)	7º período (PPC 20	05)					
Disciplina	СН	Aulas/ semana	Disciplina	СН	Aulas/ semana				
Processos de Fabricação	25	2	Sistemas de Controle de Processos Contínuos	60	4				
Laboratório de Processos de Fabricação	25	2	Laboratório de Sistemas de Controle de Processos Contínuos	30	2				
Mecânica Geral	25	2	Modelamento de Sistemas de Controle	60	4				
Mecânica dos fluidos	25	2							
Filosofia da Tecnologia	25	2	Processos de Fabricação	30	2				
Introdução à Sociologia	25	2	Laboratório de Processos de Fabricação	30	2				
Eletrônica Aplicada	50	4	Sistemas Microprocessados	60	4				
Laboratório de Eletrônica Aplicada	25	2	Laboratório de Sistemas Microprocessados	30	2				
Máquinas Elétricas	50	4			_				
Psicologia Aplicada às Organizações	25	2							

Em relação ao 1°. semestre de 2022, deve-se destacar:

- Há necessidade de salas de aula para 14 h-a no período integral (disciplinas: Filosofia da Tecnologia, Introdução à Sociologia, Eletrônica Aplicada, Máquinas Elétricas e Psicologia Aplicada às Organizações). O acumulado com o 1º e 3º períodos será equivalente a 23 h-a. Haverá liberação de 2 h-a de laboratório no noturno (Laboratório de Eletrônica Aplicada).
- Há necessidade de salas de aula para 4 h-a no noturno (Mecânica Geral e Mecânica dos fluidos).
- A ocupação de salas de aula passará de 20 h-a semanais do 5º período do curso noturno (PPC 2005) para 4 h-a com o PPC reestruturado, liberando salas para 16 h-a no noturno.
- As disciplinas Processos de Fabricação e Laboratório de Processos de Fabricação coincidirão com o PPC de 2005 (7º período), portanto, serão ministradas em conjunto, não aumentando a demanda por sala e professor.

ANO 2022 – 2° Semestre									
6º período (PPC reestru	turado))	8º período (PPC 200) 5)					
Disciplina	СН	Aulas/ semana	Disciplina	СН	Aulas/ semana				
Instrumentação Eletrônica	25	2	Metodologia e Redação Científica	30	2				
Laboratório de Instrumentação Eletrônica	25	2	Sistemas de Controle de Processos Discretos	60	4				
Sistemas Digitais	50	4	Laboratório de Sistemas de Controle de Processos Discretos	30	2				
Laboratório de Sistemas Digitais	25	2	Controladores Digitais Industriais	30	2				
Acionamentos Elétricos	50	4	Sistemas Integrados da Manufatura	60	4				
Laboratório de Acionamentos Elétricos	25	2	Sociologia, engenharia, tecnologia e cultura	30	2				
Fundamentos de Termodinâmica e Transferência de Calor	50	4							
Gestão Ambiental	25	2							
Modelamento de Sistemas de Controle	50	4							

Em relação ao 2°. semestre de 2022, deve-se destacar:

- Há necessidade de salas de aula para 16 h-a no período integral (disciplinas: Instrumentação Eletrônica, Acionamentos Elétricos, Fundamentos de Termodinâmica e Transferência de Calor, Gestão Ambiental e Modelamento de Sistemas de Controle). O acumulado com o 2º e 4º períodos será equivalente a 28 h-a.
- Haverá liberação de 4 h-a de laboratórios no noturno (Laboratório de Instrumentação Eletrônica e Laboratório de Acionamentos Elétricos).
- Há necessidade de sala de aula para 4 h-a no noturno (Sistemas Digitais) e de laboratório para 2 h-a (Laboratório de Sistemas Digitais).
- A ocupação de salas de aula passa de 20 h-a semanais do 6°. período do curso noturno (PPC 2005) para 6 h-a com o PPC reestruturado, liberando salas para 14 h-a no noturno.

ANO 2023 – 1° Semestre									
7º período (PPC reestru	turado))	9º período (PPC 20	005)					
Disciplina	СН	Aulas/ semana	Disciplina	СН	Aulas/ semana				
Controle e Automação	25	2	Controle Multivariável	60	4				
Laboratório de Controle e Automação	25	2	Introdução à Economia	30	2				
Sistemas Microprocessados	50	4	Redes Industriais para Instrumentação e Processos	60	4				
Laboratório de Sistemas Microprocessado	25	2	Introdução às Ciências Ambientais	30	2				
Controladores Lógico- Programáveis	50	4	Sistemas Distribuídos em Automação Industrial	30	2				
Introdução à Engenharia de Segurança	25	2							

Sistemas de Controle de Processos Contínuos	50	4		
Laboratório de Sistemas de Controle de Processos Contínuos	25	2		
Planejamento e Controle da Produção	25	2		
Normalização e Qualidade Industrial	25	2		

Em relação ao 1º. semestre de 2023, deve-se destacar:

- Há necessidade de salas de aula para 12 h-a no período integral (disciplinas: Controle e Automação, Introdução à Engenharia de Segurança, Sistemas de Controle de Processos Contínuos, Planejamento e Controle da Produção e Normalização e Qualidade Industrial). O acumulado com o 1º, 3º e 5º períodos será equivalente a 35 h-a.
- Haverá liberação de 6 h-a de laboratório no noturno (disciplinas: Controladores Lógico-programáveis e Laboratório de Sistemas de Controle de Processos Contínuos).
- Há necessidade de salas de aula para 4 h-a no noturno (Sistemas Microprocessados) e de laboratório para 2 h-a (Laboratório de Sistemas Microprocessados).
- A ocupação de salas de aula passa de 20 h-a semanais do 7°. período do curso noturno (PPC 2005) para 6 h-a com o PPC reestruturado, liberando salas para 14 h-a no noturno.

ANO 2023 – 2° Semestre									
8º período (PPC reestru	turado))	10° período (PPC 20	05)					
Disciplina	СН	Aulas/ semana	Disciplina	СН	Aulas/ semana				
Sistemas de Controle de Processos Discretos	50	4	Introdução à Engenharia de Segurança	30	2				
Laboratório de Sistemas de Controle de Processos Discretos	25	2	Segurança e Confiabilidade de Sistemas de Controle e Automação	30	2				
Projeto Técnico II	50	4	Sistemas Supervisórios e Interfaces Homem-Máquina	60	4				
Redes Industriais de Automação	50	4	Introdução à Administração	30	2				
Hidráulica e Pneumática	50	4	Pesquisa Operacional	30	2				
Controladores Digitais Programáveis	25	2	Direito e Legislação	30	2				
Gestão de RH	25	2	Trabalho de Conclusão de Curso I	15	1				
Sistemas Integrados de Manufatura	50	4							

Em relação ao 2º. semestre de 2023, deve-se destacar:

 Há necessidade de sala de aula para 18 h-a no período integral (disciplinas: Sistemas de Controle de Processos Discretos, Projeto Técnico II, Redes Industriais de Automação, Gestão de RH e Sistemas Integrados de Manufatura). O acumulado com o 2°, 4° e 6° períodos será equivalente a 46 h-a.

- Haverá liberação de 8 h-a de laboratório no noturno (Laboratório de Sistemas de Controle de Processos Discretos, Hidráulica e Pneumática e Controladores Digitais Programáveis).
- Não haverá necessidade de salas de aula ou de laboratórios no noturno para o PPC reestruturado.

ANO 2024 – 1° Semestre									
9º período (PPC reestru	turado)		11º período (PPC 20	05)					
Disciplina	СН	Aulas/ semana	Disciplina	СН	Aulas/ semana				
Sistemas de Controle Inteligente	25	2	Trabalho de Conclusão de Curso II	15	1				
Laboratório de Sistemas Inteligentes e DSP's	25	2	Estágio	30	2				
Processamento Digital de Sinais	25	2	Normalização e Qualidade Industrial	30	2				
Manutenção Industrial	25	2	Gestão de Recursos Humanos	30	2				
Pesquisa Operacional	25	2	Planejamento e Controle da Produção	30	2				
Controle Moderno Multivariável	50	4	Manutenção Industrial	30	2				
Introdução à Robótica Industrial	25	2							
Introdução ao Direito	25	2							
Introdução à Economia	25	2	_						
Metodologia de Pesquisa	25	2							
Trabalho de Conclusão de Curso I	12,5	1							

Em relação ao 1°. semestre de 2024, deve-se destacar:

- Há necessidade de salas de aula para 17 h-a no período integral (Sistemas de Controle Inteligente, Pesquisa Operacional, Controle Moderno Multivariável, Introdução à Robótica Industrial, Introdução ao Direito, Introdução à Economia, Metodologia de Pesquisa e Trabalho de Conclusão de Curso I). O acumulado com o 1°, 3°, 5° e 7° períodos será equivalente a 52 h-a.
- Haverá liberação de 2 h-a de laboratório no noturno (Processamento Digital de Sinais).
- A disciplina Manutenção Industrial do PPC reestruturado coincidirá com o PPC de 2005 (11º período), portanto será ministrada em conjunto, não aumentando a demanda de sala e professor.

ANO 2024 – 2° Semestre							
10º período (PPC reestruturado)							
Disciplina	СН	Aulas/ semana					
Sistemas Distribuídos em Automação Industrial	30	2					
Segurança e Confiabilidade de Sistemas de Controle e Automação	30	2					
Sistemas Supervisórios e Interfaces Homem-Máquina	60	4					
Trabalho de Conclusão de Curso II	15	1					
Estágio	30	2					

Em relação ao 2°. semestre de 2024, deve-se destacar:

- Há necessidade de salas de aula para 7 h-a no período integral (Sistemas Distribuídos em Automação Industrial, Segurança e Confiabilidade de Sistemas de Controle e Automação, Trabalho de Conclusão de Curso II e Orientação de Trabalho de Estágio Supervisionado). O acumulado com o 2º, 4º, 6º e 8º períodos será equivalente a 53 h-a.
- Haverá liberação de 4 h-a de laboratórios no noturno (Sistemas Supervisórios e Interface Homem-máquina.

O plano de reestruturação curricular será monitorado constantemente em relação ao aumento de carga horária por período como evidenciado na Tabela 12. Esta análise foi realizada junto aos departamentos da Formação Geral, Minas e Construção Civil além do Departamento da Eletromecânica.

Tabela 12 - Análise do aumento de carga horária por período

	1° período reestruturado/ 3° período (PPC 2005)						
Disciplina	Período	Professor	CH (h)	Aulas/semana	Aumento (aulas/semana)		
Química Básica	1	DFGAX	25	2			
Lab. Química Básica	1	DFGAX	25	2			
Cálculo I	1	DFGAX	75	6	2		
Cálculo III	3	DFGAX	60	4			
Cálculo Numérico	3	DFGAX	30	2			
GAAV	1	DFGAX	75	6	2		
Algébra Linear	3	DFGAX	30	2			
Física II	3	DFGAX	60	4			
Física Experimental I	3	DFGAX	30	2			
Total DFGAX				30	4		
Contexto Social e	1	DELMAX	25	2			
Profissional	I	DELIVIAA	2	2			
Introdução a Prática	1	1 DELMAX	12,5	1			
Experimental	'	DELIVIAX	12,5	1			
Programação de	1	1 DELMAX	25	2			
Computadores I	!	DELIVIAX	25	۷			
Lab de Programação	1	DELMAX	25	2	2		
de Computadores I	!	DELIVIAX	25	۷	2		
Metrologia	3	DELMAX	30	2			
Circuitos Elétricos I	3	DELMAX	30	2			
Lab de Circuitos	3	DELMAX	30	2			
Elétricos I	3	DELIVIAX	30	2			
Total DELMAX				13	2		
Desenho Técnico	1	DMCAX	50	4			
Total DMCAX				4	não há		

2° período reestruturado/ 4° período (PPC 2005)					
Disciplina	Período	Professor	CH (h)	Aulas/semana	Aumento (aulas/semana)
Cálculo II	2	DFGAX	75	6	2
Cálculo IV	4	DFGAX	60	4	
Estatística	2	DFGAX	50	4	
Fisíca I	2	DFGAX	60	4	
Fisíca III	4	DFGAX	60	4	
Fisíca Experimental II	4	DFGAX	30	2	
Total DFGAX				24	2
Programação de	2	DELMAX	25	2	
Computadores II		DELIVIAX	20	2	
Lab de Programação	2	DELMAX	25	2	
de Computadores II					
Ciência dos Materiais	2	DELMAX	25	2	
Circuitos Elétricos II	4	DELMAX	30	2	
Conversão					
Eletromecânica de	4	DELMAX	30	2	
Energia					
Lab de Conversão					
Eletromecânica de	4	DELMAX	30	2	
Energia					
Eletrônica Aplicada	4	DELMAX	60	4	
Lab de Eletrônica	4	DELMAX	30	2	
Aplicada	4	DELIVIAX	30	2	
Total DELMAX				18	não há
Projeto técnico I	2	DMCAX	25	2	2
Total DMCAX				2	2
Libras I	2	DIRGRAD	25	2	
Total DIRGRAD				2	não há

3° período reestruturado/ 5° período (PPC 2005)					
Disciplina				Aulas/semana	,
Cálculo III	3	DFGAX	50	4	
Algébra Linear	3	DFGAX	50	4	2
Física II	3	DFGAX	50	4	
Física Experimental I	3	DFGAX	25	2	
Total DFGAX				14	2
Circuitos Elétricos I	3	DELMAX	25	2	
Lab de Circuitos Elétricos I	3	DELMAX	25	2	
Metrologia	3	DELMAX	25	2	
Estática	3	DELMAX	50	4	2
Instrumentação Eletrônica	5	DELMAX	30	2	
Lab Instrumentação Eletrônica	5	DELMAX	30	2	
Acionamentos Elétricos	5	DELMAX	60	4	
Lab de Acionamentos Elétricos	5	DELMAX	30	2	
Mecânica Geral	5	DELMAX	60	4	
FTTC	5	DELMAX	60	4	
Total DELMAX				28	2
Mecânica dos Fluidos	5	DMCAX	30	2	
Total DMCAX				2	não há

4° período reestruturado/ 6° período (PPC 2005)					
Disciplina	Período	Professor	CH (h)	Aulas/semana	Aumento (aulas/semana)
Cálculo IV	4	DFGAX	50	4	
Métodos Numéricos	4	DFGAX	50	4	2
Computacionais					
Fisíca III	4	DFGAX	50	4	
Física Experimental II	4	DFGAX	25	2	
Metodologia Científica	4	DFGAX	25	2	2
Introdução a Administração	4	DFGAX	25	2	
Total DFGAX				18	4
Circuitos Elétricos II	4	DELMAX	25	2	
Instrumentação,					
Controle e e	6	DELMAX	30	2	
Automação					
Lab de					
Instrumentação,		DELMAN	00	0	
Controle e e	6	DELMAX	30	2	
Automação					
Controladores Lógico	0	DELMAN	00	0	
Programáveis	6	DELMAX	30	2	
Acionamentos					
Hidráulicos e	6	DELMAX	60	4	
Pneumáticos					
Sistemas Digitais	6	DELMAX	60	4	
Lab de Sistemas	6	DELMAX	30	2	
Digitais	6	DELIVIAA	30	2	
Total DELMAX				18	não há
Resistência dos	4° / 6°	DELMAX	50	4	
Materiais	+ / 0	DELIVIAN	30	4	
Total DMCAX				4	não há
Libras II	4	DIRGRAD	25	2	
Total DIRGRAD				2	não há

	5° período reestruturado/ 7° período (PPC 2005)					
Disciplina	Período	Professor	CH (h)	Aulas/semana	Aumento (aulas/semana)	
Filosofia da	5	DFGAX	25	2	2	
Tecnologia	5	DEGAN	25	2	2	
Introdução a	5	DFGAX	25	2		
Sociologia	5	DEGAX	20	2		
Psicologia Aplicada as	5	DFGAX	25	2	2	
organizações	3	DI GAX	23	2	۷	
Total DFGAX				6	4	
Processos de	5°/7°	DELMAX	25	2		
Fabricação	377	DELIVIAN	23	2		
Lab de Processos de	5°/7°	DELMAX	25	2		
Fabricação	371	DELIVIAN	23	2		
Mecânica Geral	5	DELMAX	25	2		
Eletrônica Aplicada	5	DELMAX	50	4		
Lab de Eletrônica	5	DELMAX	25	2		
Aplicada	3	DELIVIAN	23	2		
Máquinas Elétricas	5	DELMAX	50	4		
Sistemas de Controle						
de Processos	7	DELMAX	60	4		
Contínuos						
Lab de Sistemas de						
Controle de	7	DELMAX	30	2		
Processos Contínuos						
Modelamento de	7	DELMAX	60	4		
Sistemas de Controle	1	DELIVIAN	00	4		
Sistemas	7	DELMAX	60	4		
Microprocessados	1	DELIVIAN	00	4		
Lab de Sistemas	7	DELMAX	30	2		
Microprocessados	′	DELIVIAN	30			
Total DELMAX				32	não há	
Mecânica dos Fluidos	5	DMCAX	30	2		
Total DMCAX				2	não há	

6° período reestruturado/ 8° período (PPC 2005)					
Disciplina	Período	Professor	CH (h)	Aulas/semana	Aumento (aulas/semana)
Gestão Ambiental	6	DFGAX	25	2	
Metodologia e	8	DFGAX	30	2	
Redação Científica	0	DEGAN	30	2	
Sociologia,					
Engenharia,	8	DFGAX	30	2	
Tecnologia e Cultura					
Total DFGAX				6	não há
Instrumentação	6	DELMAX	25	2	
Eletrônica	O	DELIVIAA	25	2	
Lab de					
Instrumentação	6	DELMAX	25	2	
Eletrônica					
Sistemas Digitais	6	DELMAX	50	4	
Lab de Sistemas	6	6 DELMAX	25	2	
Digitais	O	DELIVIAX	23	2	
Acionamentos	6	DELMAX	50	4	
Elétricos	0	DELIVIAN	30	4	
Lab de Acionamentos	6	DELMAX	25	2	
Elétricos	0	DELIVIAX	23	2	
Modelamento de	6	DELMAX	50	4	
Sistemas de Controle	0	DELIVIAX	30	4	
FTTC	6	DELMAX	50	4	
Sistemas de Controle					
de Processos	8	DELMAX	60	4	
Discretos					
Lab de Sistemas de					
Controle de	8	DELMAX	30	2	
Processos Discretos					
Controladores Digitais	8	DELMAX	30	2	
Industriais	O	DELIVIAN	30		
Sistemas Integrados	8	DELMAX	60	4	
de Manufatura	O	DELIVIAN	00	4	
Total DELMAX				36	não há

7° período reestruturado/ 9° período (PPC 2005)					
Disciplina	Período	Professor	CH (h)	Aulas/semana	Aumento (aulas/semana)
Introdução a	9	DFGAX	30	2	
Economia	9	DEGAX	30	2	
Introdução a Ciências	9	DFGAX	30	2	
Ambientais	9	DEGAX	30	2	
Total DFGAX				4	não há
Controle e automação	7	DELMAX	25	2	
Lab de Controle e	7	DELMAX	25	2	
automação	,	DELIVIAX	25	2	
Sistemas	7	DELMAX	50	4	
Microprocessados	,	DELIVIAA	50	4	
Lab de Sistemas	7	DELMAX	25	2	
Microprocessados	,	DELIVIAA	25	2	
Controladores Lógico	7	DELMAX	50	4	2
Programáveis	/	DELINIAX	50	4	2
Sistemas de Controle					
de Processos	7	DELMAX	50	4	
Contínuos					
Lab Sistemas de					
Controle de	7	7 DELMAX	25	2	
Processos Contínuos					
Planejamento e	7	DELMAY	25	0	
Controle da Produção	/	DELMAX	25	2	
Normalização e	7	DELMAY	25	0	
Qualidade Industrial	/	DELMAX	25	2	
Controle Multivariável	9	DELMAX	60	4	
Redes Industriais para					
Instrumentação e	9	DELMAX	60	4	
Processos					
Sistemas Distribuidos					
em Automação	9	DELMAX	30	2	
Industrial					
Total DELMAX				34	2
Introdução à					
Engenharia de	7	DMCAX	25	2	2
Segurança					_
Total DMCAX				2	2

	8° período reestruturado/ 10° período (PPC 2005)					
Disciplina	Período	Professor	CH (h)	Aulas/semana	Aumento (aulas/semana)	
Gestão de RH	8	DFGAX	25	2		
Introdução a	10	DFGAX	30	2		
Adminstração	10	DEGAN	30	2		
Direito e Legislação	10	DFGAX	30	2		
Pesquisa Operacional	10	DFGAX	30	2		
Trabalho de	10	DFGAX	4.5	1		
Conclusão de Curso I	10	DEGAX	15	ı ı		
Total DFGAX				9	não há	
Sistemas de Controle						
de Processos	8	DELMAX	50	4		
Discretos						
Lab de Sistemas de						
Controle de	8	DELMAX	25	2		
Processos Discretos						
Redes Industriais de	8	DELMAX	50	4		
Automação	0	DELIVIAX	50	4		
Hidraúlica e	8	DELMAX	50	4		
Pneumática	O	DELIVIAX	50	4		
Controladores Digitais	8	DELMAX	25	2		
Programáveis	0	DELIVIAA	25	2		
Sistemas Integrados	8	DELMAX	50	4		
de Manufatura	0	DELIVIAA	50	4		
Segurança e						
Confiabilidade de	10	DELMAX	30	2		
Sistemas de Controle	10	DELIVIAA	30	2		
e Automação						
Sistemas						
Supervisórios e	10	DELMAX	60	4		
Interfaces Homem-	10	DELIVIAA	60	4		
Máquina						
Projeto Técnico II	8	DELMAX	50	4	4	
Total DELMAX				30	4	
Introdução a						
Engenharia de	10	DMCAX	30	2		
Segurança						
Total DMCAX				2	não há	

	9° período reestruturado/ 11° período (PPC 2005)					
Disciplina	Período	Professor	CH (h)	Aulas/semana	Aumento (aulas/semana)	
Pesquisa Operacional	9	DFGAX	25	2		
Introdução ao Direito	9	DFGAX	25	2		
Introdução a	9	DFGAX	25	2		
Economia	ຶ່ນ	DEGAX	20	2		
Metodologia de	9	DFGAX	25	2	2	
Pesquisa	9	DI GAX	23	2	2	
Trabalho de	9	DFGAX	12,5	1		
Conclusão de Curso I	9	DI GAX	12,3	ı		
Gestão de Recursos	11	DFGAX	30	2		
Humanos	11	DI GAX	30	2		
Normalização e	11	DFGAX	30	2		
Qualidade Industrial	' '	DI OAK	30			
Total DFGAX				13	2	
Sistemas de Controle	9	DELMAX	25	2		
Inteligente						
Laboratório de						
Sistemas Inteligentes	9	DELMAX	25	2		
e DSP's						
Processamento Digital	9	DELMAX	25	2		
de Sinais		DEEIVII V				
Controle Moderno	9	DELMAX	50	4		
Multivariável		DELIVIT V		7		
Introdução a Robótica	9	DELMAX	25	2		
Industrial		DEEIVII V	20			
Orientação do						
Trabalho de Estágio	11	DELMAX	30	2		
Supervisionado						
Manutenção Industrial	9°/11°	DELMAX	25	2		
Planejamento e	11	DELMAX	30	2		
Controle da Produção	- ' '	DELIVIT VI				
Trabalho de	11	DELMAX	15	1		
Conclusão de Curso II	' '	DELIVITOR				
Total DELMAX				19	não há	

	10° período reestruturado						
Disciplina	Período	Professor	CH (h)	Aulas/semana	Aumento (aulas/semana)		
Sistemas Distribuídos							
em Automação	10	DELMAX	30	2			
Industrial							
Segurança e							
Confiabilidade de	10	DELMAX	30	2			
Sistemas de Controle	10	DELIVIT V	30				
e Automação							
Sistemas							
Supervisórios	10	DELMAX	60	4			
Interface Homem-	10	DEEN, V					
máquina							
Trabalho de	10	DELMAX	15	1			
Conclusão de Curso II	10	DEE!!!	10	'			
Orientação do							
Trabalho de Estágio	10	DELMAX	30	2			
Supervisionado							
Total DELMAX				11	não há		

Os dados da Tabela 12 evidenciam que:

- Haverá um aumento total de 2 h-a para o DFG (Departamento de Formação Geral), da disciplina de Cálculo I e Geometria Analítica e Cálculo Vetorial (GAAV): os quatro professores dessas disciplinas têm média de carga horária de 15,5 h-a; e 2 h-a para o DELMAX (Departamento de Eletromecânica), da disciplina Lab. de Programação de Computadores I, no 1° período (curso reestruturado) e 3° período (PPC 2005).
- Haverá um aumento de 2 h-a para o DFG, da disciplina de Cálculo II: os quatro professores dessa disciplina têm média de carga horária de 15,5 h-a; e 2 h-a para o DMCAX (Departamento de Minas e Construção Civil), da disciplina de Projeto Técnico I; sem aumento de carga horária para o DELMAX, no 2° período (reestruturado) e 4° período (PPC 2005).
- Haverá um aumento total de 2 h-a para o DFG, da disciplina de Álgebra Linear: os dois professores dessa disciplina têm média de carga horária de 15 h-a; sem aumento de carga horária para os demais departamentos, no 3° período (reestruturado) e 5° período (PPC 2005).
- Haverá um aumento total de 2 h-a para o DFG, da disciplina Métodos Numéricos
 Computacionais: os dois professores dessa disciplina têm média de carga horária de 14
 h-a; e 2 h-a para o DFG, da disciplina Metodologia Científica: os quatro professores

- dessa disciplina têm média de carga horária de 16 h-a; sem aumento de carga horária para os demais departamentos, no 4° período (reestruturado) e 6° período (PPC 2005).
- Haverá um aumento total de 4 h-a para o DFG, das disciplinas Filosofia da Tecnologia e Psicologia Aplicada às Organizações: disciplinas novas equalizadas; sem aumento de carga horária para os demais departamentos, no 5° período (reestruturado) e 7° período (PPC 2005).
- Não haverá aumento de carga horária para nenhum departamento, no 6° período (reestruturado) e 8° período (PPC 2005).
- Haverá um aumento total de 2 h-a para o DELMAX, da disciplina Controladores Lógicos Programáveis; sem aumento de carga horária para os demais departamentos, no 7° período (reestruturado) e 9° período (PPC 2005).
- Haverá um aumento total de 4 h-a para o DELMAX, da disciplina Projeto Técnico II;
 sem aumento de carga horária para os demais departamentos, no 8° período (reestruturado) e 10° período (PPC 2005).
- Haverá um aumento total de 2 h-a para o DFG, da disciplina Metodologia de Pesquisa: os quatro professores dessa disciplina têm média de carga horária de 16 h-a; sem aumento de carga horária para os demais departamentos, no 9° período (reestruturado) e 11° período (PPC 2005).

6.2 Pessoal docente e técnico-administrativo

O corpo docente do Curso de Graduação em Engenharia de Automação Industrial é constituído por professores do quadro permanente da Unidade de Araxá, com titulação mínima de especialista ou, preferencialmente, mestres e doutores, em regime de dedicação exclusiva. Os docentes devem também estar envolvidos com atividades de pesquisa, pósgraduação e, eventualmente, extensão, concomitantemente às atividades didáticas no curso.

As aulas de laboratório acontecem com um máximo de 20 alunos. Assim, a carga horária de aulas de laboratório deve ser duplicada, visto que cada turma de teoria se desdobra em duas subturmas de laboratório. Portanto, a demanda por professores se mantém ao longo do período de cinco anos.

O Corpo Docente efetivo do Curso de Engenharia de Automação Industrial da Unidade de Araxá, com sua respectiva titulação, está apresentado no Quadro 5 a seguir. Ele é composto por professores pertencentes a diversos Departamentos, como de Eletromecânica,

Formação Geral, Minas e Construção Civil. O número de Doutores atuantes no Curso de Engenharia de Automação Industrial é de 22, o que corresponde 64,70% do quadro; 10 professores mestres, equivalendo a 29,41% e 2 professores especialistas, representando 5,88% do corpo docente.

Quadro 5 - Corpo docente do curso de Engenharia de Automação Industrial do CEFET-MG/Campus Araxá

NOME	TITULAÇÃO	ÁREA DE FORMAÇÃO/ATUAÇÃO
1. Admarço Vieira da Costa	Doutor	Engenharia Elétrica
2. Admilson Vieira da Costa	Doutor	Engenharia Mecânica
3. Alessandra Ribeiro da Silva	Doutora	Matemática
4. Alexandre Dias Linhares	Mestre	Engenharia Mecânica
5. Alexandre Morais de	Doutor	Engenharia Mecânica
Oliveira		
6. Aline Fernanda Bianco	Doutora	Matemática/ Engenharia Elétrica
7. Almir Kazuo Kaminise	Doutor	Engenharia Mecânica
8. Antônio de Pádua Gandra	Mestre	Engenharia Civil
9. Birgit Yara Frey Riffel	Doutora	Ciências/ Educação
10.Carlos Alberto Domingos	Doutor	Engenharia Mecânica
Ramos		
11.Carlos Antônio de Medeiros	Doutor	Matemática/ Engenharia de Produção
12.Cláudio Pereira Lima	Doutor	Física
13.Domingos Sávio de Resende	Doutor	Engenharia Elétrica/ Engenharia de
		Materiais
14.Edilson Rodrigues Palhares	Doutor	Ciências Sociais
15.Érica Daniela de Araújo	Mestre	Estudos Linguísticos
16.Francisco de Assis Cipresso	Especialista	Engenharia Elétrica
17. Frederico Duarte Fagundes	Mestre	Engenharia de Automação Industrial
		Engenharia Elétrica
18. Glaydson Keller de Almeida	Mestre	Engenharia de Produção
Ferreira		
19. Henrique José Avelar	Doutor	Engenharia Elétrica
20. Herbert Radispiel Filho	Mestre	Matemática/ Engenharia de Materiais
21. Jalmira Regina Fiuza de	Doutora	Educação Tecnológica
Sousa		
22. Kleber Lopes Fontoura	Doutor	Engenharia Elétrica
23. Leandro Resende Mattioli	Mestre	Engenharia Elétrica/ Computação
		Gráfica
24. Leni Nobre de Oliveira	Doutora	Letras/ Literatura Brasileira
25. Luís Paulo Fagundes	Mestre	Engenharia de Automação Industrial
		Engenharia Elétrica
26. Marco Antônio Durço	Doutor	Engenharia Elétrica
27. Marcos Cícero Faria da	Mestre	Engenharia Elétrica/ Engenharia
Silva		Mecânica
28. Marcus Caetano Domingos	Mestre	História Social

NOME	TITULAÇÃO	ÁREA DE FORMAÇÃO/ATUAÇÃO
29. Mario Guimarães Junior	Doutor	Matemática/ Engenharia de Materiais
30. Milene Bianchi dos Santos	Doutora	Ciências Biológicas/ Recursos
		Florestais
31. Natal Junio Pires	Doutor	Química
32. Paulo Azevedo Soave	Pós-Doutor	Física/ Microeletrônica
33. Paulo Fernando Ortega	Doutor	Química/ Ciências/Físicoquímica
34. Renata Calciolari	Mestre	Engenharia Metalúrgica e de Materiais
35. Sérgio Luiz da Silva Pithan	Mestre	Engenharia Elétrica/ Engenharia de
		Materiais
36. Wanderley Alves Parreira	Doutor	Engenharia Elétrica, Mecânica e Civil
		Engenharia Eletrônica Industrial
		Engenharia de Controle de Potência
37. Thiago Gomes Cardoso	Mestre	Engenharia Mecânica
38. Diego Alves de Moro	Pós-Doutor	Engenharia Mecânica
Martins		

Os técnicos administrativos atuantes no curso de Engenharia de Automação Industrial, estão indicados no Quadro 6 a seguir.

Quadro 6 - Técnicos administrativos do CEFET-MG/Campus Araxá

NOME	CARGO	FUNÇÃO	TITULAÇÃO	EXPERIÊNCIA NA GRADUAÇÃO
Adriano R. Tarifa Vicente	Médico	Médico	Doutor	12 anos
Alayne Carvalho	Laboratorista	Secretária Delmax	Especialista	4 anos
Alessandra Moraes Silva	Psicóloga	Psicóloga	Especialista	12 anos
Alessandro Hermógenes da Silva	Auxiliar em Administração	Técnico de Lab. de Informática	Graduação	12 anos
Ana Caroline de Oliveira Silva	Nutricionista	Nutricionista	Graduação	3 anos
Artur E. Alves Nascimento	Estagiário	Coordenação EAI	Graduando	-
Carlos A. da Silva	Laboratorista	Laboratorista	Doutor	12 anos
Fernando Luzia França	Dentista	Dentista	Doutor	12 anos
Gilberto Pereira Daniel	Laboratorista	Laboratorista	Graduação	12 anos
Gleisa Mara Alves	Bibliotecária	Bibliotecária	Especialista	5 anos
Helena Maria Martins Leão	Auxiliar de biblioteca	Auxiliar de biblioteca	Especialista	2 anos
Íris da Costa Avelar	Bibliotecária	Bibliotecária	Especialista	12 anos
Jacqueline S. Borges de Assis	Revisora de textos	Secretária Coord. EAI	Doutor	8 anos
Joelma Maria da Silva	Auxiliar em Administração	Assistente da Direção	Mestre	5 anos
José Afonso de Matos Neto	Laboratorista	Laboratorista de Eletrônica	Mestre	12 anos

NOME	CARGO	FUNÇÃO	TITULAÇÃO	EXPERIÊNCIA NA GRADUAÇÃO
José Humberto Rios	Auxiliar Administrativo	Auxiliar do Registro Escolar	Especialista	12 anos
Kênia Mota Oliveira	Pedagoga	Pedagoga	Mestre	7 anos
Leilane Marques Roberto	Assistente administrativo	Auxiliar do Registro Escolar	Graduação	3 anos
Manoel Messias Costa	Auxiliar de biblioteca	Auxiliar de biblioteca	Especialista	3 anos
Maria José de Oliveira	Auxiliar Administrativo	Diretora Adjunta	Especialista	4 anos
Maurício J. Aureliano Junior	Técnico em TI	Técnico de Lab. de Informática	Especialista	3 anos
Milena Vieira de Ávila	Assistente administrativo	Auxiliar de biblioteca	Especialista	3 anos
Nilvania Alves Gonçalves	Assistente Social	Assistente social	Graduação	3 anos
Paulo Vitor de Oliveira	Laboratorista	Laboratorista de Mecânica	Graduação	3 anos
Regina Gaspar S. Lima	Jornalista	Jornalista	Mestre	12 anos
Rita Maria Lemos	Pedagoga	Pedagoga	Mestre	12 anos
Roberto Eustáquio da Cunha	Assistente administrativo	Chefe do Registro escolar	Especialista	12 anos
Rosângela do Rosário Prado	Enfermeira	Enfermeira	Graduação	10 anos

6.2.1 Coordenadores de Laboratórios

Praticamente todos os laboratórios, independentes ou compartilhados, têm algum responsável técnico e/ou professor, conforme nomeação e aprovação em reunião de Departamento.

6.3 Recursos Físicos

O curso de Engenharia de Automação Industrial do CEFET-MG funciona em sede própria, em Araxá, localizada Avenida Ministro Olavo Drummond nº 25, e conta, além de seus próprios laboratórios de Controle e Automação, com laboratórios de outros departamentos, tais como: Laboratórios de Química, Física, Projetos e Laboratório de Materiais de Construção (Topografia e Mecânica dos Solos).

A infraestrutura disponível para os docentes e discentes do curso de Engenharia de Automação Industrial pode ser distribuída em quatro grupos:

• **Instalações Gerais:** salas de aulas, auditório, restaurante, biblioteca, dentre outros espaços administrados pela Diretoria de Unidade.

• Áreas Administrativas Específicas do Curso: secretaria, sala de reuniões, sala das

Chefias de Departamento/Coordenação de Cursos da Unidade e sala da Coordenação do

Curso de Engenharia de Automação Industrial.

• Gabinetes para Docentes: para os professores em regime de dedicação exclusiva.

• Laboratórios: de Ensino, Equipamentos, Pesquisa, Extensão e Almoxarifados.

6.3.1 Instalações Gerais

Restaurante

O CEFET-MG/ Unidade de Araxá conta com um restaurante modernamente

mobiliado e equipado, que funciona de 2ª a 6ª feira, para almoço e jantar, com alimentação

balanceada, oferecida a baixo custo para alunos e servidores.

Além do restaurante, o campus conta com serviços de cantina terceirizada, por meio

de licitação pública, onde são fornecidos lanches rápidos e refeições, com funcionamento diário

de 8 às 21h.

Biblioteca

A Biblioteca da Unidade de Araxá do CEFET-MG funciona ininterruptamente, de

segunda a sexta-feira, de 7h às 21h, como centro de estudo, pesquisa e leitura, contemplando

não só alunos, professores e funcionários da Instituição, como também a comunidade externa.

Suas instalações físicas incluem mesas de estudos individuais, sala independente para o acervo,

espaço especial para maior acessibilidade ao acervo literário, computadores para consulta ao

catálogo, atividades acadêmicas e pesquisas, mobiliário adequado ao setor de periódicos, com

espaço pertinente à atividade a que se destina.

Bibliografia Básica

A Biblioteca da Unidade de Araxá adota a política de desenvolvimento de coleções

da Instituição, que inclui as três categorias de formas de aquisições: compra, permuta e doação.

A bibliografia do curso de Engenharia de Automação Industrial encontra-se disponível na

Biblioteca da Unidade de Araxá. Toda a organização e disseminação do acervo é feita por seus bibliotecários, que utilizam o *Sistema de Gerenciamento de Bibliotecas Sophia*.

Os usuários podem ficar com os livros por duas semanas, podendo prorrogar esse prazo, uma vez que o sistema permite a realização de reservas e renovações *online*, bem como consultas ao acervo de todas as bibliotecas do CEFET-MG, que oferecem a possibilidade do empréstimo entre bibliotecas e a comutação bibliográfica, ampliando, assim, os limites de abrangência do acervo. O Serviço de Referência auxilia os usuários em suas pesquisas.

Nos últimos anos, o CEFET-MG tem envidado esforços para ampliar seu acervo, e atingir a meta de um exemplar para até 4 alunos, no caso da bibliografia básica.

Anualmente, é aberto um processo de compra de material bibliográfico, visando ao alcance dos níveis ideais de bibliografia básica do curso de Engenharia de Automação Industrial para todas as disciplinas.

A biblioteca que atende ao curso de Engenharia funciona de segunda à sextafeira, de 7 às 21h, como centro de estudo, pesquisa e leitura, contemplando alunos, professores e servidores da Instituição. Oferece acesso ao Portal de Periódicos da CAPES, colocando este acervo à disposição dos usuários com acesso remoto oferecido pela Instituição.

Em 2014, o acervo de livros, especificamente para o curso de Engenharia de Automação Industrial, foi ampliado contemplando obras nacionais e estrangeiras. Além dos recursos da própria Instituição, as bibliotecas do CEFET-MG contam, também, com verbas advindas de editais emanados de órgãos de fomento, como FAPEMIG, CAPES e outros. Todo o acervo é tombado ao patrimônio da Instituição.

Além desse acervo físico, em dezembro de 2012, o CEFET-MG adquiriu a base de dados *Ebrary*, que conta com cerca de mais de 90.000 títulos. Esta base de dados oferece acesso prático e rápido, por meio de interface em português, a títulos de mais de 300 das melhores editoras mundiais. A *Ebrary* permite a busca simples por palavras em todo o texto, incluindose os livros, assim como a busca avançada por campos de assunto, editora, data de publicação, entre outros. A base de dados permite pesquisar o texto completo dos livros eletrônicos, ler a íntegra dos livros no navegador, fazer marcações e anotações no texto, buscar informações adicionais em sites na internet a partir do texto marcado, organizar os livros em pastas e compartilhá-los com outros usuários, baixar capítulos de livros em formato PDF, imprimir e copiar texto (limitado a até 60 páginas, dependendo do título), baixar o livro completo para leitura *offline*, usando o programa Adobe – Digital Editions e fazer buscas. O CEFET-MG também adquiriu, em 2013, a base de dados de Livros Eletrônicos EBSCO que oferece

assinatura da coleção de Ebooks Academics Subscription Coltection - Wordwide (All),

disponibilizando mais de 130.000 títulos, abrangendo todas as áreas de conhecimento.

Bibliografia Complementar

O acervo da bibliografia complementar das disciplinas do curso de Engenharia de

Automação Industrial é diversificado. A lista de bibliografias complementares sugeridas é

adequada às necessidades e contexto no qual se inserem as disciplinas. Os professores são

incentivados a indicarem no mínimo cinco títulos para compor o rol das bibliografias

complementares das disciplinas. O acervo é atualizado frequentemente, ou seja, em todas as

compras feitas, são adquiridos livros das bibliografias complementares do curso.

Periódicos Especializados

O CEFET-MG possui acesso direto e completo no PORTAL de PERIÓDICOS da

CAPES, que atende às necessidades de pesquisa em bases de dados nacionais e internacionais

de periódicos, patentes, normas técnicas, anais de congressos e similares, referências, e-books,

teses e dissertações. O PORTAL de PERIÓDICOS da CAPES indexa, atualmente, mais de

12.600 títulos de periódicos com texto completo, além de fornecer índices de citações,

estatísticas de uso, entre outros materiais.

Os periódicos, essenciais para as áreas de engenharia, são acessados pelo portal.

Ainda pelo portal, é possível acessar as bases de dados do SCIELO que indexa mais de 200

títulos nacionais e internacionais, alguns com coleções na íntegra e todos com acesso ao texto

completo.

Acesso dos alunos a equipamentos de informática

O curso de Engenharia de Automação Industrial utiliza os três laboratórios de

informática do campus, sendo um situado no segundo andar do prédio da biblioteca, com 20

computadores, outro na sala 12 do prédio do curso de Mecânica, também com 20 computadores

e o Laboratório de Geoprocessamento, situado no prédio do Departamento de Minas e

Construção Civil com capacidade para 40 computadores, todos utilizados em aulas e trabalhos

de pesquisa

Projeto Pedagógico do Curso de Engenharia de Automação Industrial — Campus Araxá — Projeto de Reestruturação do Curso, 2020. Centro Federal de Educação Tecnológica de Minas Gerais

Os alunos que desenvolvem projetos de pesquisa em trabalhos de iniciação científica

têm acesso aos laboratórios, com autorização do Coordenador de Laboratórios e de seu

orientador, desde que haja a presença de um monitor ou técnico de laboratório. Para isso, o

professor orientador informa o nome desses alunos à recepção e aos guardas do campus, que

repassam a informação aos monitores de informática que realizam plantões com os alunos. O

laboratório de informática é compartilhado entre os diversos cursos da Unidade de Araxá.

Salas de aula

As aulas do curso de Engenharia de Automação Industrial são distribuídas em seis

salas com capacidade para 45 alunos, localizadas nos prédios 2, 3, 5 e 6 do campus, as quais

são equipadas com cadeiras universitárias padronizadas e de excelente qualidade, mesa e

cadeira para professor, quadro branco e possibilidade de utilização de lousa eletrônica e data-

shows.

As janelas das salas garantem ventilação e iluminação naturais. São

disponibilizados aos professores um data-show e três lousas eletrônicas para apoio didático, os

quais devem ser reservados na coordenação do curso.

Com relação às condições de limpeza e iluminação, os ambientes atendem a

contento para o desempenho das funções a que se destinam, sendo bem arejados e iluminados.

No geral, as instalações do campus estão em um bom estado de conservação.

Áreas de Lazer e Serviços de Saúde – SMODE

Para a realização da educação esportiva, a Unidade de Araxá dispõe de uma quadra

poliesportiva coberta e um campo de futebol society gramado.

O SMODE (Serviços Médico, Odontológico e de Enfermagem) da Unidade de

Araxá conta com consultórios médico e odontológico e sala de espera.

O consultório médico é equipado com maca hospitalar e armários com

medicamentos, que são considerados básicos para consultas.

O consultório odontológico possui uma cadeira odontológica com cuspideira,

refletor de luz e mesa, aparelho para limpeza com bicarbonato refinado, aparelho para resina e

um amalgamador. É comum aos dois consultórios a utilização da autoclave para esterilização

de materiais.

Projeto Pedagógico do Curso de Engenharia de Automação Industrial – Campus Araxá – Projeto de Reestruturação do Curso, 2020.

Centro Federal de Educação Tecnológica de Minas Gerais

An Ministro Claus Programment 25. Prima São Caraldo Araxá Micro CER 28 180 510

Áreas administrativas específicas do curso de Engenharia de Automação Industrial

Os postos de trabalho destinados às secretárias, coordenador e e o subcoordenador

da Coordenação do Curso possuem computadores com acesso direto ao sistema acadêmico

"SIGAA", por meio do qual é possível verificar informações a respeito dos dados cadastrais e

acadêmicos, boletim atual, histórico e diário dos discentes, assim como dados cadastrais do

corpo docente.

As informações relativas ao curso são divulgadas através do sítio eletrônico do

curso. O horário de funcionamento da Coordenação do Curso de Engenharia de Automação

Industrial é de 2ª a 6ª feira, nos três períodos, prioritariamente no noturno. Os alunos são

atendidos de 9 às 22h, em horário de revezamento entre coordenador e subcoordenador do

curso.

Gabinetes de Trabalho para Professores

A Unidade de Araxá dispõe de gabinetes que são disponibilizados aos professores

com dedicação exclusiva. Nesse espaço, os professores realizam suas atividades didáticas,

consultam a internet, preparam aulas e desenvolvem outras tarefas que demandam a interação

com outros docentes e discentes.

Laboratórios Didáticos Especializados

O curso de Engenharia de Automação Industrial conta com laboratórios específicos

utilizados em aulas práticas e trabalhos de pesquisa. O curso tem como característica forte

ênfase em aulas práticas, pois muitas disciplinas têm aulas teóricas e aulas de laboratório como

co-requisitos. Os laboratórios da Instituição são destinados, prioritariamente, ao

desenvolvimento das atividades de ensino e pesquisa vinculadas ao CEFET-MG, com acesso

permitido a usuários da comunidade escolar previamente autorizados. Em relação às condições

de uso, está regulamentado que os laboratórios só podem ser abertos nas seguintes condições:

i. Em horário de aulas previamente agendadas pela coordenação do respectivo curso,

sendo responsável o professor da disciplina;

Projeto Pedagógico do Curso de Engenharia de Automação Industrial – Campus Araxá – Projeto de Reestruturação do Curso, 2020.

Centro Federal de Educação Tecnológica de Minas Gerais

ii. Em horários previamente estabelecidos para monitoria ou estágio. Neste caso,

o responsável é o funcionário, monitor ou estagiário definido, para atender no horário

especificado;

iii. Em horários diferentes dos definidos acima, desde que monitorado por um

professor, técnico-administrativo ou funcionário da instituição;

iv. Qualquer outro uso em horários extraordinários deve ser comunicado e

autorizado pela diretoria administrativa ou pela coordenação de laboratórios, sob a

supervisão de um responsável para acompanhar os alunos.

O horário de uso dos laboratórios em disciplinas regulares dos cursos técnicos e de

graduação do CEFET-MG/ Unidade de Araxá é definido semestralmente pelos Departamentos.

No horário de aula, a prioridade de uso é dos alunos e professores da disciplina cujo

horário foi reservado. O acesso aos equipamentos de informática e à rede de dados é feita

através de login personalizado. É de responsabilidade dos usuários zelar pela conservação dos

laboratórios e de todos os equipamentos; comunicar qualquer problema técnico dos

equipamentos à coordenação ou ao setor responsável; ao fechar o laboratório, verificar se os

equipamentos e as instalações estão nas mesmas condições em que encontrou e entregar as

chaves dando baixa no setor de controle; orientar os demais usuários sobre normas de

segurança, impedindo o uso indevido que signifique riscos ao patrimônio da Instituição e às

pessoas.

O objetivo desta abordagem é oferecer ao discente conhecimento prático,

desenvolver competências técnicas e habilidades práticas. Os laboratórios especializados do

curso, são especificados a seguir:

Laboratório de Acionamentos Elétricos

Este laboratório atende aos Cursos de Engenharia de Automação Industrial e

Técnico em Eletrônica e é composto por equipamentos como computadores, bancadas

didáticas, Módulos universais garantindo conhecimento prático ao alunos.

Laboratórios de Controle e Automação e Redes Industriais

Compostos por equipamentos como plantas didáticas completas para

desenvolvimento das aulas e de hard & softwares para TCCs de alunos, estes laboratórios

atendem com qualidade os requisitos necessários do Cursos de Engenharia de Automação

Industrial.

Laboratórios de Circuitos CC e CA

O laboratório de Circuitos CC funciona junto aos laboratórios de Eletrônica I e II.

Já o laboratório de Circuitos CA está acoplado ao laboratório de Acionamentos Elétricos.

Laboratórios de Tecnologia da Informação

A coordenação do curso de Engenharia de Automação Industrial conta com o apoio

técnico do Núcleo de Tecnologia da Informação - NTI para manutenção de hardwares e

atualização dos softwares em laboratórios de informática e demais laboratórios que façam uso

de computadores. Estes laboratórios do Curso são disponibilizados aos alunos fora do horário

de aula para trabalhos de pesquisa ou trabalho de conclusão de curso, mediante cadastro feito

pelo professor responsável junto ao Departamento de Eletromecânica, responsável pelo

controle das chaves dos laboratórios.

Laboratório de Produção Mecânica, Soldagem (Fabricação) e Materiais

Em três áreas independentes, estes laboratórios de Produção Mecânica e Soldagem

(Fabricação) e Materiais possuem equipamentos específicos para atendimento aos cursos de

Engenharia de Automação Industrial e curso Técnico de Mecânica Industrial.

Laboratório de Projetos

O Laboratório de Projetos conta uma estrutura adequada para atender aos alunos

dos Cursos Técnicos em Mecânica, Eletrônica, e Edificações, além das Engenharias de

Automação Industrial e de Minas.

Laboratório de Física

Projeto Pedagógico do Curso de Engenharia de Automação Industrial – Campus Araxá – Projeto de Reestruturação do Curso, 2020.

Centro Federal de Educação Tecnológica de Minas Gerais

Este laboratório possui capacidade para atender turmas com 16 alunos cada, e

equipamentos específicos para experimentos em geral, garantindo a qualidade do ensino nos

cursos de Engenharia de Automação Industrial, Engenharia de Minas e aos cursos Técnicos do

CEFET MG, unidade de Araxá.

Laboratório de Química

O Laboratório de Química dispõe de materiais e equipamentos necessários à

execução de experimentos em diversas disciplinas com segurança, atendendo aos alunos dos

cursos Técnicos e das Engenharias de Minas e Automação Industrial.

Laboratório de Hidráulica e Pneumática

Este laboratório conta com equipamentos especializados para o curso de Técnico de

Mecânica e Engenharia de Automação Industrial, melhorando a capacitação dos alunos nas

disciplinas de Hidráulica e Pneumática, Introdução à Prática Experimental, além de projetos de

ensino e extensão no âmbito do CEFET MG.

Laboratórios de Eletrônica 1 e Eletrônica 2

Estão equipados por computadores, osciloscópio analógico e geradores de função,

equipamentos necessários para as disciplinas de Eletrônica aplicada, circuitos elétricos, entre

outras.

Laboratório de Sensores

O laboratório de Sensores é composto por diversos equipamentos como kits de sensores

analógicos e digitais utilizados para ensino e pesquisa em projetos de sistemas automatizados

no curso de Engenharia de Automação Industrial.

Projeto Pedagógico do Curso de Engenharia de Automação Industrial - Campus Araxá - Projeto de Reestruturação do Curso, 2020. Centro Federal de Educação Tecnológica de Minas Gerais

7 REFERÊNCIAS DO PROJETO

BRASIL. Ministério da Educação. *Resolução CNE/CES n° 2/2019*, de 24 de abril de 2019. Institui as Diretrizes Curriculares Nacionais do Curso de Graduação em Engenharia. Diário Oficial da União. Brasília, 26/04/2019. Edição: 80. Seção: 1. Página: 43.

BRASIL. Ministério da Educação. *Resolução CNE/CES* n° 7/2018, de 18 de dezembro de 2018. Estabelece as Diretrizes para a Extensão na Educação Superior Brasileira e regimenta o disposto na Meta 12.7 da Lei 13.005/2014, que aprova o Plano Nacional de Educação – PNE 2014-2024 e dá outras providências. Diário Oficial da União, Brasília, 19de dezembro de 2018, Seção 1, pp. 49 e 50.

BRASIL. Conselho Federal de Educação. Dispõe sobre o Currículo Mínimo para as Engenharias. Resolução n. 48/76. *Diário Oficial da União*, Brasília, 27 abr. 1977, seção 3.

BRASIL. Conselho Nacional de Educação. Câmara de Ensino Superior. Parecer n. 776, 3 dez. 1997. Orientação para as diretrizes curriculares para os cursos de graduação. Disponível em: http://portal.mec.gov.br/cne/index.php?option=content&task=view&id=148&Itemid=246#1 997S>.

BRASIL. Conselho Nacional de Educação. Câmara de Ensino Superior. Parecer n. 583, 4 abr. 2001a. Disponível em: http://portal.mec.gov.br/cne/index.php?option=content&task=view&id=148&Itemid=246#1 997S>.

BRASIL. Conselho Nacional de Educação. Câmara de Ensino Superior. Parecer n. 1362, 12 dez. 2001b. Disponível em: http://portal.mec.gov.br/cne/index.php?option=content&task=view&id=148&Itemid=246#1997S

BRASIL. Conselho Nacional de Educação. Câmara de Ensino Superior. Parecer n. 329, 11 nov. 2004. Carga horária mínima para os cursos de graduação, bacharelados, na modalidade presencial. Disponível em: http://www.mec.gov.br/cne/pdf/2004/ CES329.pdf>.

BRASIL. Conselho Nacional de Educação. Câmara de Ensino Superior. Resolução CNE/CES n.11, 11 mar. 2002. Diretrizes Curriculares Nacionais dos Cursos de Engenharia. *Diário Oficial da União*, Brasília, seção 1, p. 32, 9 abr. 2002.

BRASIL. Ministério da Educação e do Desporto. Portaria n. 1694/94. *Diário Oficial da União*, Brasília, 18 nov. 1994.

BRASIL. Ministério da Educação. Lei n. 9394, 20 dez. 1996. Estabelece as diretrizes e bases da educação nacional. Disponível em http://portal.mec.gov.br/arquivos/pdf/ldb.pdf>.

BRASIL. Ministério da Educação. Lei n. 10172, jan. 2001c. Plano Nacional de Educação. Disponível em: http://portal.mec.gov.br/index.php?option=content&task=view&id=78&Itemid=221.

BRASIL. Ministério da Educação. RESOLUÇÃO Nº 2, DE 18 DE JUNHO DE 2007. Disponível em: http://portal.mec.gov.br/cne/arquivos/pdf/2007/rces002_07.pdf.

BRASIL, Ministério da Educação. Programa de Educação Tutorial-PET: manual de orientações básicas, 2006. Disponível em http://portal.mec.gov.br/pet/manual-de-orientacoes>.

CONSELHO FEDERAL DE ENGENHARIA, ARQUITETURA E AGRONOMIA - CONFEA. Resolução n. 427, mar. 1999. *Diário Oficial da União*, Brasília, 7 maio 1999, seção 1, p. 179. Toda a legislação do sistema CONFEA/CREA encontra-se disponível no site: www.confea.org.br.

FUNDAÇÃO SEADE. PAER. *Síntese executiva*. Estudos de mercado de trabalho como subsídio para a reforma da Educação Profissional do Estado de Minas Gerais: indústria, serviços e agropecuária. Brasília: Fundação SEADE/PAER-Pesquisa da Atividade Econômica Regional Minas Gerais, 2000. Disponível em http://www.mec.gov.br/semtec/proep/paer/estmerc/mg/sintese_mg.zip>.

INSTITUTO DE PLANEJAMENTO E DESENVOLVIMENTO SUSTENTÁVEL DE ARAXÁ, 2016. Disponível em http://ipdsa.org.br/>. PREFEITURA DE ARAXÁ, 2016. Disponível em www.prefeituradearaxa.gov.br

CENTRO FEDERAL TECNOLÓGICO DE MINAS GERAIS, 2016. Disponível em http://www.araxa.cefetmg.br/historico/.

FONSECA, CELSO SUCKOW. História do ensino industrial no Brasil, 1961 e 1962. CENTRO FEDERAL TECNOLÓGICO DE MINAS GERAIS, 2017. Disponível em http://cefetmg.br/textoGeral/historia.html.

CENTRO FEDERAL TECNOLÓGICO DE MINAS GERAIS, 2016. Programas, Projetos e Ações de Pesquisa e Extensão. Disponível em http://www.cefetmg.br/galeria/guia_academico/Guia_Graduacao_A5_CEFETMG_2016_2_Digital.pdf, p.35-39.

CENTRO FEDERAL TECNOLÓGICO DE MINAS GERAIS, 2016. Programas, Projetos e Ações de Apoio aos estudantes. Disponível em http://www.cefetmg.br/galeria/guia_academico/Guia_Graduacao_A5_CEFETMG_2016_2_Digital.pdf, p.31-34

CEFET-MG. **Resolução CEPE nº 24/2008.** Estabelece normas e diretrizes para os cursos superiores de graduação do CEFET-MG e dá outras providências. Belo Horizonte, 20018. http://www.cepe.cefetmg.br/galerias/Arquivos_CEPE/Resolucoes_CEPE/Resolucoes_CEPE_2008/RES_CEPE_24_08.htm. Acesso em: 30 abr. 2019.

CUNHA, Flávio Macedo; BURNIER, Suzana. Estrutura curricular por eixos de conteúdos e atividades. XXXIII COBENGE: Promovendo e valorizando a engenharia em um cenário de constantes mudanças. **Anais...** Campina Grande-PB: ABENGE, 2005. Disponível em: http://www.abenge.org.br/cobenge/arquivos/14/artigos/MG-6-25585339672-1115845862573.pdf>. Acesso em: 29 abr. 2019.

CUNHA, Flávio Macedo; SCHROEDER, Marco Aurélio de Oliveira. Projeto pedagógico do curso de Engenharia Elétrica do CEFET-MG. XXXV COBENGE: Novos paradigmas da educação em engenharia. **Anais...** Curitiba-PR, ABENGE, 2007. Disponível em: http://www.abenge.org.br/cobenge/arquivos/12/artigos/115-Flavio%20Macedo%20Cunha.pdf>. Acesso em: 29 abr. 2019.

LIBÂNEO, José Carlos. **Didática.** São Paulo: Cortez, 2004.

MANFREDI, Sílvia Manfredi. **Metodologia do ensino:** diferentes concepções (versão preliminar), 1993. Disponível em:

https://edisciplinas.usp.br/pluginfile.php/1974332/mod_resource/content/1/METODOLOGIA -DO-ENSINO-diferentes-concep%C3%A7%C3%B5es.pdf Acesso em: 28 abr. 2019.

RAMOS, Marise Nogueira. Implicações políticas e pedagógicas da EJA integrada à Educação Profissional. **Educação e Realidade.** Porto Alegre. n. 35. v. 1. p. 65-85. jan./abr. 2010.

APÊNDICE I – LISTA DE BIBLIOGRAFIA POR DISCIPLINA

EIXO 1 – MATEMÁTICA e COMPUTAÇÃO

Disciplina:	CÁLCULO I
Abreviação:	MAT1.1

Referências Básicas

- FLEMMING, Diva Marília; GONÇALVES, Mirian Buss. Cálculo A: funções, limite, derivação, integração. 6.ed. São Paulo: Makron, 2007.
- STEWART, James. Cálculo. 6. ed. São Paulo: Cengage Learning, 2010. v. 1.
- GUIDORIZZI, Hamilton Luiz. Um curso de cálculo. 5. ed. Rio de Janeiro: LTC, 2001, v.1

Referências Complementares

- LEITHOLD, Louis. O Cálculo com Geometria Analítica. 3. ed. Harbra, 1994. v. 1.
- THOMAS, George B; WEIR, Maurice D.; HASS, Joel. Cálculo.11. ed. São Paulo: Pearson Education do Brasil, 2009. v. 1.
- MUNEM, Mustafa A.; FOULIS, David J. Cálculo. 1. ed. Rio de Janeiro: LTC, 2008. v.1.
- SIMMONS, George F. Cálculo com geometria analítica. 4. ed. São Paulo: McGraw-Hill, 1987. v.1.
- PISKUNOV, Nikolai. S. Cálculo diferencial e integral. 7. ed. Porto: Lopes da Silva, 1982.

Disciplina:	CÁLCULO II
Abreviação:	MAT1.2

Referências Básicas

- STEWART, James. Cálculo. 6. ed. São Paulo: Cengage Learning, 2009. v. 2.
- FLEMMING, Diva Marília; GONÇALVES, Miriam Buss. Cálculo B. 2. ed. São Paulo: Makron, 2007.
- GUIDORIZZI, Hamilton Luiz. Um curso de cálculo. 5. ed. Rio de Janeiro: LTC, 2008, v.2 e v.3

Referências Complementares

- LEITHOLD, Louis. Cálculo com Geometria Analítica. 3. ed. Harbra, 1994. v. 2.
- THOMAS, George B; WEIR, Maurice D.; HASS, Joel. Cálculo.11. ed. São Paulo: Pearson Education do Brasil, 2009. v. 2.
- SIMMONS, George F. Cálculo com Geometria Analítica. 4 ed. São Paulo: McGraw-Hill, 2010.v.2.
- EDWARDS, C. H.; PENNEY, David E. Cálculo com geometria analítica. 4. ed. Prentice-Hall,1994. v. 3
- SWOKOWSKI, Earl W. Cálculo com geometria analítica. 2. ed. São Paulo: Makron Books, 1994. v.2

Disciplina:	CÁLCULO III
Abreviação:	MAT1.3

Referências Básicas

• CASSAGO JÚNIOR, Hermínio; LADEIRA, Luiz Augusto da Costa. Equações diferenciais ordinárias: notas de aulas. São Carlos: ICMC/USP, 2011.

- ZILL, Dennis G.; CULLEN, Michael R. Equações diferenciais. 3. ed. São Paulo: Pearson Makron Books, c2001. 2 v., il. Apresenta índice analítico. ISBN 978-85-346-1291-3 (v. 1): 85-346-1141-6 (v. 2).
- THOMAS, George Brinton; WEIR, Maurice D; HASS, Joel; GIORDANO, Frank R (Adapt.). Cálculo. 11. ed. São Paulo: Addison Wesley: Pearson, 2009. 2 v. ISBN 978-85-88639-31-7 (v. 1): 978-85-88639-36-2 (v. 2).

Referências Complementares

- BOYCE, William E; DIPRIMA, Richard C. Equações diferenciais elementares e problemas de valores de contorno. Tradução de Valéria de Magalhães Iório. 9. ed. Rio de Janeiro: LTC, c2010. xiv, 607 p., il. ISBN 978-85-216-1756-3.
- GOLDSTEIN, Larry J.; LAY, David C.; SCHNEIDER, David I. Cálculo e suas aplicações. São Paulo: Hemus, c1981. 521 p., il. ISBN 0-13-112177-4.
- SIMMONS, George F. Cálculo com geometria analítica. São Paulo: Pearson Education do Brasil, c1987. 2 v. ISBN 978-00-745-0411-6 (v. 1): 978-85-346-1468-9 (v. 2).
- STEWART, James. Cálculo. Tradução de Antônio Carlos Moretti, Antônio Carlos Gilli Martins. 6. ed. São Paulo: Cengage Learning, 2010. 2 v., il. ISBN 85-221-0660-6 (v. 1). ISBN 85-221-0661-5 (v. 2).
- KAPLAN, Wilfred; GOMIDE, Elza F. Cálculo avançado. São Paulo: E. Blucher, c1972. 2v. ISBN 978-85-212-0047-5 (v. 1.): 978-85-212-004-9 (v. 2).

Disciplina:	CÁLCULO IV
Abreviação:	MAT1.4

Referências Básicas

- ZILL, D. G., CULLEN, M. R. Equações diferenciais. São Paulo: Makron Books, 2005. v.2.
- STEWART, J. Cálculo. 4. ed. São Paulo: Pioneira Thomson Learning, 2003. v.1.
- EDWARDS JUNIOR, C.H.; PENNEY, David E. Equações diferenciais elementares com problemas de contorno. 3. ed. Rio de Janeiro: Prentice Hall, 1995.

Referências Complementares

- SIMMONS, G. F. Cálculo com geometria Analítica. São Paulo: McGraw-Hill, 1987. v.2.
- BRONSON, R. Moderna introdução às equações diferenciais. São Paulo: McGraw-Hill, 1977.
- CASSAGO JUNIOR, H., LADEIRA, L. A. C. Equações diferenciais ordinárias: notas de aulas. São Carlos: ICMC/USP, 2012.
- ZILL, D. G., CULLEN, M. R. Equações diferenciais. São Paulo: Makron Books, 2005. v.1.
- BOYCE, William E; DIPRIMA, Richard C. Equações diferenciais elementares e problemas de valores de contorno. Tradução de Valéria de Magalhães Iório. 9. ed. Rio de Janeiro: LTC, c2010. xiv, 607 p., il.

Disciplina:	GEOMETRIA ANALÍTICA E ÁLGEBRA VETORIAL
Abreviação:	MAT1.5

Referências Básicas

- EDWARDS Jr., C.H. Cálculo com geometria analítica v.1 e v.2. 4. ed. Rio de Janeiro: Prentice-Hall, 1997.
- WINTERLE, Paulo. Vetores e geometria analítica. São Paulo: Person Education do Brasil, c2000.
- CAMARGO, Ivan de. Geometria analítica: um tratamento vetorial. 3. ed., [rev. e ampl.]. São Paulo: Pearson Education do Brasil, 2005.

Referências Complementares

• STEINBRUCH, Alfredo. Geometria analítica. 2. ed. São Paulo: Pearson Makron Books, 2006.

- LEITHOLD, Louis. O cálculo com geometria analítica v.1 e v. 2. 3. ed. São Paulo: Harbra, c1994.
- BOLDRINI, José Luiz. Álgebra linear. 3. Ed., ampliado e revisado. São Paulo: Harbra, c1986.
- JUDICE, Edson Durão. Elementos de geometria analítica. Belo Horizonte: Vega, 1968.
- KINDLE, Joseph H. Geometria analítica: plana e no espaço: resumo da teoria, 345 problemas resolvidos, 910 problemas propostos. São Paulo: McGraw-Hill, 1978.

Disciplina:	ESTATÍSTICA
Abreviação:	MAT1.6

Referências Básicas

- DEVORE, Jay L. Probabilidade e Estatística para Engenharia e Ciências. 6 ed. São Paulo: Pioneira Thomson, 2006.
- MONTGOMERY, Douglas C.; RUNGER, George C. Estatística Aplicada e Probabilidade para Engenheiros. 4 ed. Rio de Janeiro: LTC, 2009.
- TRIOLA, Mário F. Introdução à Estatística. 10 ed. Rio de Janeiro: LTC, 2008.

Referências Complementares

- LARSON, R.; FARBER, B. Estatística aplicada. 4. ed. São Paulo: Ed. Pearson Prentice Hall, 2010.
- HINES, W.W., MONTGOMERY, D.C., GOLDSMAN, D.M. & BORROR, C.M. Probabilidade e Estatística na Engenharia. 4 ed. Rio de Janeiro: LTC, 2011.
- FARIAS, A. A.; SOARES, J. F.; CÉSAR, C. C. Introdução à Estatística. 2 ed. Rio de Janeiro: LTC, 2003.
- MONTGOMERY, D. C. Introdução ao Controle Estatístico da Qualidade. 4 ed. Rio de Janeiro: LTC, 2009.
- BARROS NETO, B.; SCARMINIO, I. E.; BRUNS, R. E. Como fazer experimentos: aplicações na ciência e na indústria. 4. ed. Porto Alegre: Bookman, 2010.

Disciplina:	ÁLGEBRA LINEAR
Abreviação:	MAT1.7

Referências Básicas

- BOLDRINI, J. L. et. al. Álgebra linear. 3. ed. São Paulo: Harbra-Row do Brasil, 1986.
- CALLIOLI C. A., DOMINGUES, H.; COSTA, R. C. F. Álgebra Linear e aplicações. 6 ed. São Paulo: Atual, 2003.
- LIPSCHUTZ, S., LIPSON, M. L. Teoria e problemas de álgebra linear. 3. ed. São Paulo: Makron Books, 2004.

Referências Complementares

- ANTON, H.; RORRES, C. Álgebra linear com aplicações, 8. ed. Porto Alegre, RS: Bookman, 2001.
- COELHO, F. U. Um curso de álgebra linear. 2. ed. São Paulo: EDUSP, 2007.
- KOLMAN, B., HILL, D. R. Introdução à álgebra linear com aplicações. 8. ed. Rio de Janeiro: LTC, 2006.
- LIPSCHUTZ, S., LIPSON, M. L. Álgebra linear. 4. ed. Porto Alegre, RS: Bookman, 2011.
- SANTOS, R. J. Um curso de geometria analítica e álgebra linear. Belo Horizonte: Imprensa Universitária da UFMG, 2013. Disponível: http://www.mat.ufmg.br/~regi/livros.html).

Disciplina:	MÉTODOS NUMÉRICOS COMPUTACIONAIS
Abreviação:	MAT1.8

Referências Básicas

- CAMPOS, F. F. Algoritmos numéricos. 2. ed. Rio de Janeiro: LTC, 2007.
- FRANCO, N. B. Cálculo numérico. São Paulo: Prentice Hall do Brasil, 2006.
- OGATA, Katsuhiko. MATLAB: for control engineers. Upper Saddle River, NJ: Prentice Hall, 2008.
- GILAT, Amos. Matlab com aplicações em engenharia. 2. ed. Porto Alegre: Bookman, 2005.

Referências Complementares

- BARROSO, L. C. et al. Cálculo numérico: com aplicações. 2. ed. São Paulo: Harbra, 1987.
- RUGGIERO, M. A. G.; LOPES, V. L. R. Cálculo numérico: aspectos teóricos e computacionais. 2. ed. São Paulo: Makron Books, 1996.
- SPERANDIO, D.; MENDES, J. T.; SILVA, L. H. M. Cálculo numérico: características matemáticas e computacionais dos métodos numéricos. São Paulo: Prentice Hall do Brasil, 2003.
- BRONSON, Richard; COSTA, Gabriel B. Equações diferenciais. Tradução de Fernando Henrique Silveira; Revisão de Antonio Pertence Júnior. 3. ed. Porto Alegre: Bookman, 2008.
- CUNHA, M. Cristina C. Métodos numéricos. Campinas, SP: UNICAMP, c2000.

Disciplina:	PROGRAMAÇÃO DE COMPUTADORES I
Abreviação:	CMP1.9

Referências Básicas

- DAMAS, Luís. Linguagem C. 10. ed. Rio de Janeiro: LTC, 2007. 410 p. ISBN 978-85-216-1519-4.
- DEITEL, H. M.; DEITEL, P. J. C: como programar. Tradução de Daniel Vieira. 6. ed. São Paulo: Pearson, 2011.
- MANZANO, José Augusto N. G.; OLIVEIRA, Jayr Figueiredo de. Estudo dirigido de algoritmos. 13. ed., rev. atual. e ampl. São Paulo: Érica, 2010. 236 p. (Série estudo dirigido. Coleção (P. D.). ISBN 978-85-7194-413-8.
- MANZANO, José Augusto N. G. Estudo dirigido de linguagem C. 13. ed. rev. São Paulo: Érica, 2010. 212 p. (Coleção PD. Série Estudo Dirigio). ISBN 978-85-7194-887-7 (broch.).
- MEDINA, Marco; FERTIG, Cristina. Algoritmos e programação: teoria e prática. 2. ed. São Paulo: Novatec, 2006. 384 p. ISBN 85-7522-073-X (broch.).
- SENNE, Edson Luiz França. Primeiro curso de programação em C. 3. ed. Florianópolis: Visual Books, 2009. 318 p., il. ISBN 978-85-7502-245-0.

Referências Complementares

- ARAÚJO, Everton Coimbra de. Algoritmos: fundamento e prática. 3. ed. ampl. e atual. Florianópolis: VisualBooks, 2007. 414 p. ISBN 978-85-7502-209-2.
- FORBELLONE, A. L. V.; EBERSPÄCHER, H. F. Lógica de programação: a construção de algoritmos e estruturas de dados. 3.ed. São Paulo: Pearson Prentice-Hall, 2005. 218p.
- GUIMARÃES, Ângelo de Moura; LAGES, Newton Alberto de Castilho. Algoritmos e estruturas de dados. Rio de Janeiro: LTC, 1985. 216 p. (Ciência da computação).
- MANZANO, José Augusto N. G.; OLIVEIRA, Jayr Figueiredo de. Algoritmos: lógica para desenvolvimento de programação de computadores. 23. ed. São Paulo: Érica, 2010. 236 p. ISBN 85-7194-718-X.
- PEREIRA, Silvio do Lago. Algoritmos e lógica de programação em C: uma abordagem didática. São Paulo: Érica, 2010. 190 p., il. ISBN 978-85-365-0327-1 (broch.).

Disciplina:	LABORATÓRIO DE PROGRAMAÇÃO DE COMPUTADORES I
Abreviação:	CMP1.10

Referências Básicas

- DAMAS, Luís. Linguagem C. 10. ed. Rio de Janeiro: LTC, 2007. 410 p. ISBN 978-85-216-1519-4.
- DEITEL, H. M.; DEITEL, P. J. C: como programar. Tradução de Daniel Vieira. 6. ed. São Paulo: Pearson, 2011.
- MANZANO, José Augusto N. G.; OLIVEIRA, Jayr Figueiredo de. Estudo dirigido de algoritmos. 13. ed., rev. atual. e ampl. São Paulo: Érica, 2010. 236 p. (Série estudo dirigido. Coleção (P. D.). ISBN 978-85-7194-413-8.
- MANZANO, José Augusto N. G. Estudo dirigido de linguagem C. 13. ed. rev. São Paulo: Érica, 2010. 212 p. (Coleção PD. Série Estudo Dirigio). ISBN 978-85-7194-887-7 (broch.).
- MEDINA, Marco; FERTIG, Cristina. Algoritmos e programação: teoria e prática. 2. ed. São Paulo: Novatec, 2006. 384 p. ISBN 85-7522-073-X (broch.).
- SENNE, Edson Luiz França. Primeiro curso de programação em C. 3. ed. Florianópolis: Visual Books, 2009. 318 p., il. ISBN 978-85-7502-245-0.

Referências Complementares

- ARAÚJO, Everton Coimbra de. Algoritmos: fundamento e prática. 3. ed. ampl. e atual. Florianópolis: VisualBooks, 2007. 414 p. ISBN 978-85-7502-209-2.
- FORBELLONE, A. L. V.; EBERSPÄCHER, H. F. Lógica de programação: a construção de algoritmos e estruturas de dados. 3.ed. São Paulo: Pearson Prentice-Hall, 2005. 218p.
- GUIMARÃES, Ângelo de Moura; LAGES, Newton Alberto de Castilho. Algoritmos e estruturas de dados. Rio de Janeiro: LTC, 1985. 216 p. (Ciência da computação).
- MANZANO, José Augusto N. G.; OLIVEIRA, Jayr Figueiredo de. Algoritmos: lógica para desenvolvimento de programação de computadores. 23. ed. São Paulo: Érica, 2010. 236 p. ISBN 85-7194-718-X.
- PEREIRA, Silvio do Lago. Algoritmos e lógica de programação em C: uma abordagem didática. São Paulo: Érica, 2010. 190 p., il. ISBN 978-85-365-0327-1 (broch.).

Disciplina:	PROGRAMAÇÃO DE COMPUTADORES II
Abreviação:	CMP1.11

Referências Básicas

- SINTES. Aprenda programação orientada a objetos. Ed. Pearson. São Paulo, 2010.
- LIPPMAN, S. B.; LAJOIE, J., MOO, B. E. C++ Primer. 4. ed. Upper Saddle River: Addison-Wesley, 2005.
- DEITEL, P.; DEITEL, H. Java: como programar. 6 ed. São Paulo: Pearson Prentice Hall, 2005.

- MANZANO, J. A. Algoritmos: Lógica para desenvolvimento de programação de computadores. Ano 2005.
- ARAUJO, E. C. Algoritmos: Funsamentos e práticas. 2007.
- DEITEL, H. C#: Como programar. 2013.
- PEREIRA, S. L. Algoritmos e lógica de programação em C: Uma abordagem didática. 2010.
- MEDINA, M. Algoritmos e programação: Teoria e prática. 2005.

Disciplina:	LABORATÓRIO DE PROGRAMAÇÃO DE COMPUTADORES II
Abreviação:	CMP1.12

- SINTES. Aprenda programação orientada a objetos. Ed. Pearson. São Paulo, 2010.
- LIPPMAN, S. B.; LAJOIE, J., MOO, B. E. C++ Primer. 4. ed. Upper Saddle River: Addison-Wesley, 2005.
- DEITEL, P.; DEITEL, H. Java: como programar. 6 ed. São Paulo: Pearson Prentice Hall, 2005.

Referências Complementares

- MANZANO, J. A. Algoritmos: Lógica para desenvolvimento de programação de computadores. Ano 2005.
- ARAUJO, E. C. Algoritmos: Funsamentos e práticas. 2007.
- DEITEL, H. C#: Como programar. 2013.
- PEREIRA, S. L. Algoritmos e lógica de programação em C: Uma abordagem didática. 2010.
- MEDINA, M. Algoritmos e programação: Teoria e prática. 2005.

EIXO 02: FÍSICA E QUÍMICA

Disciplina:	QUÍMICA BÁSICA
Abreviação:	QUI2.1

Referências Básicas

- RUSSEL, J.B. Química Geral. volume 1, 2. ed. São Paulo: Makron Books, 2008.
- RUSSEL, J.B. Química Geral volume 2, 2. ed. São Paulo: Makron Books, 2008.
- ATKINS, P. Físico-química. Volume 1. 9. ed. Rio de Janeiro: LTC, 2012.
- ATKINS, P. Química Inorgânica. 4. ed. Porto Alegre: Bookman, 2008.

Referências Complementares

- LEE, J.D. Química Inorgânica Não Tão Concisa. São Paulo: Edgard Blucher, 2007.
- MOORE, W.J. Físico-Química. volume1. São Paulo: Edgar Blucher, 1976.
- CHANG, R. Química. 11. ed. São Paulo: McGraw-Hill, 2013.
- BRADY, James E. Química Geral: volume 1. 2. ed. Rio de Janeiro: LTC, 1986.
- BRADY, James E. Química Geral: volume 2 2. ed. Rio de Janeiro: LTC, 1986.
- KOTZ, John C. Química Geral e Reações Químicas. v.1 São Paulo: Cengage Learning, 2009.
- KOTZ John C. Química Geral e Reações Químicas. v.2 São Paulo: Cengage Learning, 2009.

Disciplina:	LABORATÓRIO DE QUÍMICA BÁSICA
Abreviação:	QUI2.2

Referências Básicas

- POSTMA, James M. Química no laboratório. 5. ed. São Paulo: Manole, 2009.
- ATKINS, P. W., JONES, L. Princípios de Química: Questionando a Vida Moderna e o Meio Ambiente. 3ª ed. Porto Alegre: Bookman, 2006. 968p.
- RUSSEL, J. B. Química Geral. 2ª ed. Rio de Janeiro: Makron Books, 2009. Vol1 e 2.
- BRADY, J. E.; HUMISTON, G. E. Química Geral. 2ª ed. Rio de Janeiro: LTC, 1986. Vol. 1 e

- ATKINS, P.J; PAULA J. Fundamentos de Físico-Química, 5°, Rio de Janeiro ed. LTC, 2008.
- MAHAN, B. H. Química: Um Curso Universitário. 2ª ed. São Paulo: Edgard Blücher, 1997.

- BROWN, L. S., HOLME, T. A. Química Geral Aplicada à Engenharia. São Paulo: Cengage Learning, 2009.
- BACCAN, N.; ANDRADE, J.C; GODINHO,O.E.S. e BARONE, J.S. Química Analítica Qualitativa Elementar, 3 a Ed., 2a reimpressão, E. Edgard Blücher Ltda, São Paulo, 2004.
- KOTZ, J. C. Química e Reações Químicas. 4ª ed. Rio de Janeiro: LTC, 2002. Vol. 1,2.
- VOGEL, A. I. Análise química quantitativa. 5. ed. Rio de Janeiro: Guanabara Koogan, c1992.

Disciplina:	FÍSICA I
Abreviação:	FIS2.3

- WALKER, J; RESNICK, R; HALLIDAY, D. Fundamentos de física: mecânica 8. ed. Rio de Janeiro: LTC, 2009, v.1.
- YOUNG, H.D.; FREEDMAN, R.A; SEARS & ZEMANSKY. Física 1: mecânica. 12.ed. São Paulo: Pearson, 2008.
- TIPLER, P.; MOSCA, G. Física para cientistas e engenheiros: mecânica, oscilações e ondas, termodinâmica. 6. ed. Rio de Janeiro: LTC, 2009. v.1.

Referências Complementares

- CHAVES, A.; SAMPAIO, J.F. Física básica: mecânica. Rio de Janeiro: LTC/LAB, 2007.
- NUSSENZVEIG, H. M. Curso de física básica: mecânica. 5. ed. São Paulo: Edgar Blücher, 2013.
- HALLIDAY, D.; RESNICK, R.; KRANE, K.S. Física 1. 5. ed. Rio de Janeiro: LTC, 2003.
- SERWAY, R.A.; JEWETT JR., J.W. Princípios de física: mecânica clássica. 3 ed. São Paulo: Thomson, 2004.
- FEYNMAN, R. P.; SANDS, M.; LEIGHTON, R.B. Lições de Física de Feynman. Porto Alegre: Bokmann, 2008, v.1.

Disciplina:	FÍSICA II
Abreviação:	FIS2.4

Referências Básicas

- WALKER, J.; RESNICK, R; HALLIDAY, D. Fundamentos de física: mecânica. 8. ed. Rio de Janeiro: LTC, 2009, v.3.
- SEARS, F.; ZEMANSKY, M. W. Física 3: mecânica. 12.ed. São Paulo: Addison Wesley, 2008.
- TIPLER, P. A. Física para cientistas e engenheiros. 5. ed. Rio de Janeiro: LTC, 2006.

Referências Complementares

- WALKER, J. O circo voador da física. 2 ed. Rio de Janeiro: LTC, 2008.
- BAUER, W.; WESTFALL, Gary D.; DIAS, H. Física para universitários: Mecânica. São Paulo: AMGH, 2012. v.3.
- NUSSENZVEIG, H. M. Curso de física básica: mecânica. 4. ed. São Paulo: Edgar Blücher, 2002. v.3.
- HEWITT, P. G.; SUCHOCKI, J.; HEWITT, L. A. Conceptual Physical Science. 05th. ed. San Francisco: Pearson Education Inc., c2012.
- RESNICK, R.; HALLIDAY, D.; KRANE, K. S. Física 1. 5. ed. Rio de Janeiro: LTC, 2003. v.3.
- FEYNMAN, R. P. Lições de Física de Feynman. v.2. Porto Alegre: Bokmann, 2008.

Disciplina:	FÍSICA EXPERIMENTAL I
Abreviação:	FIS2.5

Referências Básicas

- WALKER, J.; RESNICK, Robert; HALLIDAY, David. Fundamentos de física: mecânica. 8. ed. Rio de Janeiro: LTC, c2009, v.1 e 3.
- SEARS, F.; ZEMANSKY, M.W.; Física 1: mecânica. 12.ed. São Paulo: Addison Wesley, 2008.
- TIPLER, P. A. Física para cientistas e engenheiros. 5. ed. Rio de Janeiro: LTC, 2006. v.1.

Referências Complementares

- WALKER, J. O circo voador da física. 2. ed. Rio de Janeiro: LTC, 2008.
- CAMPOS, A. A.; ALVES, E. S.; SPEZIALI, N. L. Física experimental básica na universidade. 2. ed. Belo Horizonte: Editora UFMG, 2008.
- HEWITT, P. G.; SUCHOCKI, J.; HEWITT, L. A. Conceptual Physical Science. 05th. ed. San Francisco: Pearson Education Inc., c2012.
- CAMPOS, A. A.; ALVES, E.S.; SPEZIALI, N. L.; Física experimental básica na universidade. 2. ed. Belo Horizonte: Ed. da UFMG, 2008.
- NUSSENZVEIG, H. M. Curso de física básica: mecânica. 4. ed. São Paulo: Edgar Blücher, 2002. v.1 e 3.

Disciplina:	FÍSICA III
Abreviação:	FIS2.6

Referências Básicas

- WALKER, J.; RESNICK, Robert; HALLIDAY, D. Fundamentos de física: mecânica. 8. ed. Rio de Janeiro: LTC, c2009, v.2 e 4.
- SEARS, F.; ZEMANSKY, M. W.; Física 2 e 4: mecânica. 12.ed. São Paulo: Addison Wesley, 2008.
- TIPLER, P. A. Física para cientistas e engenheiros. 5. ed. Rio de Janeiro: LTC, 2006. v.1.

Referências Complementares

- YOUNG, Hugh D. SEARS; ZEMANSKY. Física 2: ondas, óptica e termodinâmica. 12.ed. São Paulo: Pearson Addison Wesley, c2008.
- WALKER, J. O circo voador da física. 2 ed. Rio de Janeiro: LTC, 2008.
- BAUER, W.; WESTFALL, Gary D.; DIAS, H. Física para universitários: ondas, óptica e termodinâmica. São Paulo: AMGH, 2013.v.2.
- NUSSENZVEIG, H. M. Curso de física básica: ondas, óptica e termodinâmica. São Paulo: Edgar Blucher, 2002. v.2.
- HEWITT, P.G.; SUCHOCKI, J.;, HEWITT, Leslie A. Conceptual Physical Science. 05th. ed. San Francisco: Pearson Education Inc., c2012.

Disciplina:	FÍSICA EXPERIMENTAL II
Abreviação:	FIS2.7

Referências Básicas

- RESNICK, R.; HALLIDAY, D.; WALDER, J. Fundamentos de física: mecânica. 8. ed. Rio de Janeiro: LTC, 2009. v.2 e 4.
- TIPLER, Paul A; MOSCA, G. Física para cientistas e engenheiros. 6. ed. Rio de Janeiro: LTC, 2009. v.1 e 2.
- SEARS, F.; YOUNG, H. D.; ZEMANSKY, MARK W. Física: mecânica. 12. ed. São Paulo: Addison Wesley, 2008. v.2 e 4.

- WALKER, J. O circo voador da física. 2. ed. Rio de Janeiro: LTC, 2008.
- CAMPOS, A. A.; ALVES, E. S.; SPEZIALI, N. L. Física experimental básica na universidade. 2. ed. Belo Horizonte: Editora UFMG, 2008.

- HEWITT, Paul G., SUCHOCKI, John, HEWITT, Leslie A. Conceptual Physical Science. 05th. ed. San Francisco: Pearson Education Inc., c2012.
- CAMPOS, Agostinho Aurélio, ALVES, Elmo Salomão, SPEZIALI, Nivaldo Lúcio. Física experimental básica na universidade. 2. ed. Belo Horizonte: Ed. da UFMG, 2008.
- NUSSENZVEIG, H. M. Curso de física básica: mecânica. 4. ed. São Paulo: Edgar Blücher, 2002. v.2.

EIXO 03: CIÊNCIAS HUMANAS, SOCIAIS E GERENCIAIS

Disciplina:	CONTEXTO SOCIAL E PROFISSIONAL DA ENGENHARIA DE AUTOMAÇÃO INDUSTRIAL
Abreviação:	CHS3.1

Referências Básicas

- MIYAGI, Paulo Eigi. Controle programável: fundamentos do controle de sistemas a eventos discretos. São Paulo: Blucher, 1996.
- NATALE, Ferdinando. Automação industrial. 9. ed. São Paulo: Érica, 2007.
- SILVEIRA, Paulo Rogério da. Automação e controle discreto. 9. ed. São Paulo: Érica, 2007.
- CAPELLI, Alexandre. Automação industrial: controle do movimento e processos contínuos. 2. ed. São Paulo: Érica, 2007.

Referências Complementares

- HOLTZAPPLE, Mark Thomas. Introdução à engenharia. Rio de Janeiro: Livros Técnicos e Científicos, 2006.
- CHIAVENATO, Idalberto. Introdução à teoria geral da administração. 9. ed. Barueri: Manole, 2014.
- BRAVERMAN, Harry. Trabalho e capital monopolista: a degradação do trabalho do século XX. 3. ed. Rio de Janeiro: LTC, 1987.
- BROCKMAN, Jay B. Introdução à Engenharia: modelagem e solução de problemas. Rio de Janeiro: LTC, 2013.
- PESSOA, Marcelo Schneck de Paula. Introdução à automação: para cursos de engenharia e gestão. 1. ed. Rio de Janeiro: Elsevier, 2014.

Disciplina:	INTRODUÇÃO À PRÁTICA EXPERIMENTAL
Abreviação:	CHS3.2

Referências Básicas

- CERVO, A. L.; BERVIAN, P. A.; SILVA, R. da. Metodologia Científica. 6. Ed. São Paulo: Prentice-Hall, 2007.
- CAMPOS, A. A. G.; ALVES, S.; SPEZIALI, N. L. Física Experimental Básica na Universidade. 2 ed. Belo Horizonte: Ed. Da UFMG, 2008.
- CREASE, R. P. Os 10 mais belos experimentos científicos. Rio de Janeiro: Zahar, 2006.

- FREIRE MAIA, N. A ciência por dentro. 7 ed. Petrópolis, RJ: Vozes, 2007
- MOSLEY, M. & LYNCH, J. Uma história da ciência: Experiência, poder e paixão. Rio de Janeiro: Zahar, 2011.
- ARRIBAS, S. D. Experiências de Física ao alcance de todas as escolas. Rio de Janeiro: FAE, 1998.

- SEVERINO, A. J.. Metodologia do trabalho científico. 15 ed. São Paulo: Cortez Autores Associados, 1989.
- TOBIAS, J. A. Como fazer sua pesquisa. São Paulo: Editora AM, 1992.

Disciplina:	FILOSOFIA DA TECNOLOGIA
Abreviação:	CHS3.3

- GALIMBERTI, U. Psiche e techne: o homem na idade da técnica. São Paulo: Paulus, 2006.
- PINTO, Á. V. O Conceito de tecnologia. Rio de Janeiro: Contraponto, 2005. v.1.
- HEIDEGGER, M. Ensaios e conferências. São Paulo/Rio de Janeiro: Universitária e Vozes, 2008.

Referências Complementares

- NEWTON, F.M. A ciência por dentro. 7 ed. Petrópolis: Vozes, 2007.
- MARX, K. O capital: crítica da economia política. São Paulo: Nova Cultural, 1985.
- OLIVEIRA, N. F. de, SOUZA, R. T. de. Fenomenologia hoje III: bioética, biotecnologia, biopolítica. Porto Alegre: EDIPUCRS, 2008.
- ROSSI, P. Francis Bacon: da magia à ciência. Londrina, Curitiba: EDUEL e UFPR, 2006.
- CUNHA, J.A. Filosofia: iniciação à investigação filosófica. São Paulo: Atual, 1992.

Disciplina:	INTRODUÇÃO À SOCIOLOGIA
Abreviação:	CHS3.4

Referências Básicas

- DAL ROSSO, Sadi. Mais trabalho! A intensificação do labor na sociedade comtemporânea. São Paulo: Boitempo, 2008.
- HARVEY, David. O Neoliberalismo: História e Implicações. São Paulo, Edições Loyola, 2008.
- FERNANDES Florestan. A integração do negro na sociedade de classes. São Paulo:Companhia Editora Nacional, 1952. 2v.

Referências Complementares

- ANTUNES, Ricardo. Os sentidos do trabalho: ensaios sobre a afirmação e negação do trabalho.
 São Paulo: Boitempo, 2009.
- FERRAZ, Deise Luiza da Silva. (Org.). Gestão de Pessoas: Armadilhas da Organização do Trabalho. Ltr: São Paulo, 2014.
- FRANCO, Maria Sylvia de Carvalho. Homens Livres na ordem escravocrata. São Paulo: Editora UNESP, 1997.
- MAIO, Marco C.; SANTOS, Ricardo Ventura (org). Raça, Ciência e Sociedade. Rio de Janeiro: Editora Fiocruz; CCBB, 1996.
- WACQUANT, L. As prisões da miséria. Rio de Janeiro: Jorge Zahar, 2001.

Disciplina:	PSICOLOGIA APLICADA ÀS ORGANIZAÇÕES
Abreviação:	CHS3.5

Referências Básicas

- ROBBINS, Stephen P. Comportamento Organizacional. São Paulo: Pearson Prentice Hall, 2005.
- CARRARA, S. et al. (Org). Gênero e diversidade na escola: formação de professoras/es em gênero, orientação sexual e relações étnico-raciais. Rio de Janeiro: CEPESC; Brasília: SPM, 2009. 2v.
- MILKOVICH, T.G.E BOUDREU, W.J. Administração de recursos humanos. São Paulo, Atlas, 2006.

- AGUIAR, M.A.F. Psicologia aplicada a administração: Uma introdução a psicologia organizacional/ São Paulo: Atlas, 1991. 235p.
- ZANELLI, BORGES-ANDRADE, BASTOS (org). A psicologia organizacional e do trabalho no Brasil. Porto Alegre: Artmed, 2004.
- FREITAS, M.E.; HELOANI, R.; BARRETO, M. Assédio Moral no Trabalho. São Paulo: Cengage Learning, 2008.
- W. CODO W.; M.G. JACQUES (orgs), Saúde Mental e Trabalho: Leituras. Petrópolis: Vozes, 2001.
- MUNANGA, Kabengele e GOMES, Nilma Lino. Para entender o negro no Brasil de hoje: história, realidades, problemas e caminhos. São Paulo: Global; Ação Educativa, 2004.

Disciplina:	GESTÃO DE RECURSOS HUMANOS
Abreviação:	GER3.6

- ARAUJO, Luís César G. de. Gestão de pessoas: edição compacta/Luís César G. Araújo, Adriana Amadeu Garcia. São Paulo: Atlas, 2010.
- ROBBINS, Stephen P. Comportamento Organizacional: Stephen P. Robbins, Tmothy A. Judge, Filipe Sobral, (tradução Rita de Cássia Gomes). –14 ed. São Paulo: Pearson Prentice Hall,
- CHIAVENATO, Idalberto. Recursos Humanos: o capital humano das organizações. 9.ed. Rio de Janeiro: Elsevier, 2009.

Referências Complementares

- SOBRAL, Filipe. Administração: teoria e prática no contexto brasileiro. São Paulo: Pearson Prentice Hall, 2008.
- MORGAN, Gareth. Imagens da organização/Gareth Morgan; tradução Cecília Whitaker Bergamini, Roberto Coda. 1 ed. 13. Reimpr. São Paulo: Atlas, 2009.
- LACOMBE, Francisco José Masset. Recursos Humanos: princípios e tendências. São Paulo: Saraiva, 2005.
 Artigos científicos:
- O SEQUESTRO DA SUBJETIVIDADE E AS NOVAS FORMAS DE CONTROLE PSICOLÓGICO NO TRABALHO: UMA ABORDAGEM CRÍTICA AO MODELO TOYOTISTA DE PRODUÇÃO. Autoria: José Henrique de Faria e Francis Kanashiro Meneghetti.
- O PROCESSO DE PRECARIZAÇÃO DO TRABALHO NA MINERAÇÃO E A ATUAÇÃO DO SINDICATO METABASE DOS INCONFIDENTES NO MUNICIPIO DE MARIANA-MG. Autoria: Emília da Silva Godoy; Luciano Nascimento de Jesus; Suely do Pilar Xavier Duarte.

Disciplina:	GESTÃO AMBIENTAL
Abreviação:	GER3.7

Referências Básicas

- CURI, D. (Org.) Gestão ambiental. São Paulo: Pearson, 2011. 312 p.
- DIAS, R. Gestão ambiental: responsabilidade social e sustentabilidade. 2. ed. São Paulo: Atlas, 2011. 232p.
- SANCHES, L.E. Avaliação de impacto ambiental: conceitos e métodos. São Paulo: Oficina de Textos. 2006. 495p.

- BRANCO, S. M. O meio ambiente em debate. 3. ed. São Paulo: Moderna, 2004. 127p.
- BRANCO, S. M.; MURGER, E. Poluição do ar. São Paulo: Moderna, 2004. 112p.

- GIANNETTI, B. F. Ecologia industrial: conceitos, ferramentas e aplicações. São Paulo: Edgard Blücher, 2006. 109p.
- TUNDISI, J. G.; REBOUÇAS, A. C.; BRAGA, B. (Org.) Águas doces no Brasil: capital ecológico, uso e conservação. 3. ed. São Paulo: Escrituras, 2006. 748p.
- VEIGA, J. E. Meio ambiente e desenvolvimento. São Paulo: Senac, 2006. 180p.

Disciplina:	NORMALIZAÇÃO E QUALIDADE INDUSTRIAL
Abreviação:	GER3.8

- CARVALHO, T. C. Fundamentos da qualidade. Belo Horizonte: Literal, 1997.
- CAMPOS, V. F. Qualidade total: padronização de empresas. Belo Horizonte: FCO, 1992.
- PALADINI, E. P. Gestão da qualidade: teoria e prática. 2 ed. São Paulo: Atlas, 2004.
- MONTGOMERY, Douglas. Introdução ao controle estatístico da qualidade. 4. ed. Rio de Janeiro: LTC, 2004.
- SLACK, Nigel e Outros. Administração da produção. São Paulo: Atlas, 1997.

Referências Complementares

- GIL, Antônio de Loureiro. Qualidade total nas organizações: indicadores de qualidade, gestão econômica da qualidade, sistemas especialistas de qualidade. São Paulo: Atlas, 1992.
- SCHONBERGER, Richard J. Técnicas industriais japonesas. 4. ed. São Paulo: Pioneira, 1993.
- CAMPOS, Vicente Falconi. Qualidade total: padronização de empresas. Belo Horizonte: FCO, 1992.
- PALADINI, Edson Pacheco. CARVALHO, Marly Monteiro de. Gestão da qualidade: teoria e casos. Edição 2. ed., rev. e ampl. Rio de Janeiro: Elsevier: Campus, c2012.
- MARSHALL JUNIOR, Isnard [et al.]. Gestão da qualidade. Edição 10. ed. Rio de Janeiro: FGV, 2010.
 - BALLESTERO-ALVAREZ, María Esmeralda. Gestão de qualidade, produção e operações / Edição 2. ed. São Paulo: Atlas, 2012.

Disciplina:	INTRODUÇÃO À ENGENHARIA DE SEGURANÇA
Abreviação:	GER3.9

Referências Básicas

- ARAÚJO, Giovanni Moraes de. Normas regulamentadoras comentadas e ilustradas: legislação de segurança e saúde no trabalho. 9. ed. Rio de Janeiro: GVC, 2013.
- HEMÉRITAS, Adhemar Batista. Organização e normas. 5. ed. São Paulo: Atlas, 1989.
- Serviço Nacional de Aprendizagem Comercial. Prevenção de acidentes: mais higiene e segurança no trabalho. São Paulo: Brasiliense, [19 -].
- PAOLESCHI, Bruno. CIPA (Comissão Interna de Prevenção de Acidentes): guia prático de segurança do trabalho. São Paulo: Érica, c2009.
- Caderno informativo de prevenção de acidentes [Impresso]: CIPA. Mensal. São Paulo: CIPA Publicações, Produtos e Serviços. Mensal.
- Segurança e medicina do trabalho: NR-1 a 36; CLT arts.154 a 201 Lei nº 6.514, de 22-12-1977; Portaria nº 3.214, de 8-6-1978; Legislação complementar; Índice remissivo. 73. ed. São Paulo: Atlas, 2014.

Referências Complementares

- SAMPAIO, José Carlos de Arruda. PCMAT: Programa de Condições e Meio Ambiente do Trabalho na Indústria da Construção. São Paulo: PINI, 1998.
- OLIVEIRA, João Cândido de. Gestão de riscos no trabalho: uma proposta alternativa. [S.l.]: FUNDACENTRO, 1999.
- ORGANIZAÇÃO INTERNACIONAL DO TRABALHO. Convenção sobre segurança e saúde nas minas. Brasília: [s.n.], 1998.
- ARAÚJO, Giovanni Moraes de. Legislação de segurança e saúde no trabalho: normas regulamentadoras do Ministério do Trabalho e Emprego. 7. ed. Rio de Janeiro: GVC, 2009.
- ASFAHL, C. Ray. Gestão de segurança do trabalho e de saúde ocupacional. São Paulo: Reichmann & Autores, c2005.
- Serviço Nacional de Aprendizagem Industrial. Curso básico de segurança e instalações e serviços em eletricidade: riscos elétricos. Brasília: SENAI DN, 2005.
- BREVIGLIERO, Ezio. Higiene ocupacional: agentes biológicos, químicos e físicos. 4. ed.São Paulo: Ed. SENAC, 2006.

Disciplina:	INTRODUÇÃO AO DIREITO
Abreviação:	GER3.10

Referências Básicas

- ANDREOTTI NETO, Nello. Direito comercial. São Paulo: Rideel, [19--]. 3 v. ISBN (Enc.).
- FUHRER, Maximilianus C. A.; MILARÉ, Edis. Manual de direito público e privado. 17.ed., São Paulo: Revista dos Tribunais.
- MARTINS, Sérgio Pinto. Instituições de direito público e privado. 10ª ed., São Paulo: Atlas.

Referências Complementares

- MONTORO, André Franco. Introdução à ciência do direito. 27.ed., São Paulo; Revista dos Tribunais, 2008.
- REALE, Miguel. Lições preliminares de direito. São Paulo: Saraiva (ed. atualizada).
- MARTINS, Ives Gandra da Silva e Celso Ribeiro Bastos. Comentários à Constituição do Brasil.
 S.P. Editora Saraiva (ed. atualizada).
- BRASIL; CAMPANHOLE, Adriano; CAMPANHOLE, Hilton Lobo (Org.). Consolidação das leis do trabalho e legislação complementar. 93. ed. São Paulo: Atlas, 1995.
- SILVA, Vicente Gomes da. Legislação ambiental comentada. 3. ed., revisado e ampliado. Belo Horizonte: Fórum, 2006.
- HUNT, Lynn Avery,1945-. A invenção dos direitos humanos: uma história. Curitiba: A Página, 2012.

Disciplina:	INTRODUÇÃO À ECONOMIA
Abreviação:	GER3.11

Referências Básicas

- MANKIW, N. Gregory. Introdução à economia. São Paulo: Cengage Learning, 2010.
- VASCONCELLOS, Marco Antônio Sandoval de. Economia Macro e Micro 4 ed. São Pauto Atlas, 2010.
- GREMAUD, Amaury Patrick. Manual de economia. 5. ed. São Paulo: Saraiva, 2004.

- BESANKO, David / DRANOVE, D. A economia da estratégia / 5 ed. São Paulo:
- Editora Bookman, 2012.
- BLANCHARD, Olivier. Macroeconomia. 4. ed. São Paulo: Pearson Prentice Hall, 2007.
- PINDYCK, Roberto S.; RUBINFELD, Daniel L. Microeconomia. 7. ed. São Paulo: Pearson Prentice Hall, 2010.

- GREMAUD, Amaury Patrick. Introdução à economia. São Paulo: Atlas, 2007.
- MENDES, Judas Tadeu Grassi. Economia: fundamentos e aplicações. São Paulo: Pearson Prentice Hall, 2005.

Disciplina:	INTRODUÇÃO À ADMINISTRAÇÃO
Abreviação:	GER3.12

- MATARAZZO, Dante Carmine. Análise financeira de balanços: abordagem gerencial. 7. ed. São Paulo: Atlas, 2010.
- STEPHEN, P. R.; DAVID, A. D. Fundamentos de administração. São Paulo: Pearson, 2004.
- STONER, James A. F., FREEMAN, R. Edward. Administração. 5. ed. Rio de Janeiro: LTC, 1999.

Referências Complementares

- CHIAVENATO, I. Teoria geral da administração. 6. ed. São Paulo: McGraw-Hill, 2001.
- MARION, José Carlos. Contabilidade empresarial. 11. ed. São Paulo: Atlas, 2005.
- MARTINS, Eliseu. Contabilidade de custos. 9. ed. São Paulo: Atlas, 2003.
- MORAES, Anna M. P. de. Introdução à administração. São Paulo: Prentice-Hall, 2004.
- SOBRAL, Filipe; PECI, Alketa; Administração: teoria e prática no contexto brasileiro. São Paulo: Pearson, 2008.

Disciplina:	PESQUISA OPERACIONAL
Abreviação:	GER3.13

Referências Básicas

- LACHTERMACHER, Gerson. Pesquisa operacional na tomada de decisões. 4. ed. São Paulo: Pearson Prentice Hall, c2009.
- PRADO, Darci. Usando o ARENA em simulação. 2. ed. Nova Lima: INDG Tecnologia e Serviços, 2004.
- CALLIOLI, Carlos A.; DOMINGUES, Hygino H. Álgebra linear e aplicações. 6. ed., reformulada. São Paulo: Atual, c1990.

- STEINBRUCH, Alfredo; WINTERLE, Paulo. Álgebra linear. 2. ed. São Paulo: Pearson Education do Brasil, c1987.
- BOLDRINI, José Luiz. Álgebra linear. 3. ed., ampliada e revisada. São Paulo: Harbra, c1986.
- MACHADO, Antônio dos Santos. Álgebra linear e geometria analítica. 2. ed. São Paulo: Atual, 1982.
- LIPSCHUTZ, S., LIPSON, M. L. Álgebra linear. 4. ed. Porto Alegre, RS: Bookman, 2011.
- SANTOS, R. J. Um curso de geometria analítica e álgebra linear. Belo Horizonte: Imprensa Universitária da UFMG, 2013. Disponível: http://www.mat.ufmg.br/~regi/livros.html.

Disciplina:	LIBRAS I
Abreviação:	OPT3.14

- QUADROS, Ronice Muller de. Educação de surdos: aquisição da linguagem. Porto Alegre: Artes Médicas, 1997.
- SACKS, Oliver. Vendo vozes: uma viagem ao mundo dos surdos. São Paulo: Companhia das Letras, 1989.
- SKLIAR, Carlos. Surdez: um olhar sobre as diferenças. Porto Alegre: Mediação, 1998.

Referências Complementares

- FERREIRA BRITO, Lucinda. Por uma gramática das línguas de sinais: tempo brasileiro. Rio de Janeiro: Editora UFRJ, 1995.
- QUADROS, Ronice Muller de. PERLIN, Gladis. Estudos surdos II. Petrópolis: Arara Azul, 2007.
- QUADROS, Ronice Muller de; KARNOPP, Lodenir Becker. Língua de Sinais Brasileira: estudos linguísticos. Porto Alegre: Artmed, 2004.
- SOUZA, Regina Maria de. Que palavra que te falta? Linguística, educação e surdez. São Paulo: Martins Fontes, 1998.
- SKLIAR, Carlos. Um olhar sobre a diferença. Porto Alegre: Mediação, 1999

Disciplina:	LIBRAS II
Abreviação:	OPT3.15

Referências Básicas

- PIMENTA, Nelson; QUADROS, Ronice Muller de. Curso de LIBRAS. Nível Básico I. LSBVídeo, 2006.
- QUADROS, Ronice Muller de. KARNOPP, Lodenir Becker. Língua de Sinais Brasileira: estudos linguísticos. Porto Alegre: Artmed, 2004.
- SOUZA, Regina Maria de. Educação de surdos e língua de sinais. 2006. n.2, v. 7.

- ALBRES, Neiva de Aquino. História da Língua Brasileira de Sinais em Campo Grande MS. Disponível para download na página da Editora Arara Azul: http://www.editora-arara-azul.com.br/pdf/artigo15.pdf
- QUADROS, Ronice Muller de & PERLIN, Gladis. (organizadoras) Série Estudos Surdos.
 Volume 2. Editora Arara Azul. 2007. Disponível para download na página da Editora Arara Azul: www.editora-arara-azul.com.br
- QUADROS, Ronice Muller de. & VASCONCELLOS, Maria Lúcia Barbosa de. (organizadoras) Questões teóricas de pesquisas das línguas de sinais. Editora Arara Azul. 2008. Disponível para download na página da Editora Arara Azul: www.editora -arara-azul.com.br.
- RAMOS, Clélia. LIBRAS: A língua de sinais dos surdos brasileiros. Disponível para download na página da Editora Arara Azul: http://www.editora-arara-azul.com.br/pdf/artigo2.pdf
- SOUZA, Regina Maria de. Educação de Surdos e Língua de Sinais. 2006. n.2, v. 7. Disponível no site http://143.106.58.55/revista/viewissue.php

EIXO 04: FUNDAMENTOS DE ENGENHARIA

Disciplina:	DESENHO TÉCNICO
Abreviação:	DES4.1

Referências Básicas

- ONSTOTT, S. Auto CAD 2012 e Auto CAD LT 2012: guia de treinamento oficial. Porto Alegre: Bookman, 2012.
- SILVA, A. et al. Desenho técnico moderno. 4^a. ed. Rio de Janeiro: LTC, 2006.
- BALDAM, Roquemar de Lima; COSTA, Lourenço. AutoCAD® 2006 : utilizando totalmente. 5. ed. São Paulo: Érica, 2008.
- NBR 8402 Execução de caracter para escrita em desenho técnico ABNT Associação Brasileira de Normas Técnicas. Disponível em: http://www.abnt.org.br/>. Acesso em 03-04-2017.
- NBR 8403 Aplicação de linhas em desenhos Tipos de linhas Larguras das linhas ABNT
 Associação Brasileira de Normas Técnicas. Disponível em: http://www.abnt.org.br/>. Acesso em 03-04-2017.
- NBR 10067 Princípios gerais de representação em desenho técnico ABNT Associação Brasileira de Normas Técnicas. Disponível em: http://www.abnt.org.br/>. Acesso em 03-04-2017.
- NBR 10068 Folha de desenho Leiaute e dimensões ABNT Associação Brasileira de Normas Técnicas. Disponível em: http://www.abnt.org.br/>. Acesso em 03-04-2017.
- NBR 10126 Cotagem de desenho técnico ABNT Associação Brasileira de Normas Técnicas. Disponível em: http://www.abnt.org.br/>. Acesso em 03-04-2017.
- NBR 10582 Apresentação da folha para desenho ABNT Associação Brasileira de Normas Técnicas. Disponível em: http://www.abnt.org.br/>. Acesso em 03-04-2017.

- NBR 10647 Desenho técnico ABNT Associação Brasileira de Normas Técnicas. Disponível em: http://www.abnt.org.br/>. Acesso em 03-04-2017.
- NBR 13142 Dobramento de cópia ABNT Associação Brasileira de Normas Técnicas. Disponível em: http://www.abnt.org.br/>. Acesso em 03-04-2017.
- NBR 13272 Elaboração de lista e itens cópia ABNT Associação Brasileira de Normas Técnicas. Disponível em: http://www.abnt.org.br/>. Acesso em 03-04-2017.
- NBR 13273 Desenho técnico Referência a Itens. ABNT Associação Brasileira de Normas Técnicas. Disponível em: http://www.abnt.org.br/>. Acesso em 03-04-2017.

Referências Complementares

- LEAKE, James M. Manual de desenho técnico para engenharia: desenho, modelagem e visualização. Rio de Janeiro: LTC, 2010.
- PREDABON, E. P.; BOCCHESE, C. SolidWorks 2004: projeto e desenvolvimento. 3ª. ed. São Paulo: Érica, 2006.
- VENDITTI, M. V. D. R. Desenho técnico sem prancheta com AutoCAD 2010. Florianópolis: Visual Books, 2010.
- SOUZA, A. F. D.; ULBRICH, C. B. L. Engenharia integrada por computador e sistemas CAD/CAM/CNC: princípios e aplicações. São Paulo: Artliber, 2009.
- LIMA, Cláudia Campos Netto Alves de. Estudo dirigido de AutoCAD® 2010. São Paulo: Érica, 2013.

Disciplina:	PROJETO TÉCNICO I
Abreviação:	DES4.2

Referências Básicas

- ONSTOTT, S. AutoCAD 2012 e AutoCAD LT 2012: guia de treinamento oficial. Porto Alegre: Bookman, 2012.
- SILVA, A. et al. Desenho técnico moderno. 4^a. ed. Rio de Janeiro: LTC, 2006.
- BALDAM, Roquemar de Lima; Costa, Lourenço. AutoCAD® 2006: utilizando totalmente. 5. ed. São Paulo: Érica, 2008.

Referências Complementares

- LEAKE, James M. Manual de desenho técnico para engenharia: desenho, modelagem e visualização. Rio de Janeiro: LTC, 2010.
- PREDABON, E. P.; BOCCHESE, C. SolidWorks 2004: projeto e desenvolvimento. 3ª. ed. São Paulo: Érica, 2006.
- VENDITTI, M. V. D. R. Desenho técnico sem prancheta com AutoCAD 2010. Florianópolis: Visual Books, 2010.
- SOUZA, A. F. D.; ULBRICH, C. B. L. Engenharia integrada por computador e sistemas CAD/CAM/CNC: princípios e aplicações. São Paulo: Artliber, 2009.
- LIMA, Cláudia Campos Netto Alves de. Estudo dirigido de AutoCAD® 2010. São Paulo: Érica, 2013.

Disciplina:	PROJETO TÉCNICO II
Abreviação:	DES4.3

Referências Básicas

- PAHL, Gerhard; et al. Projeto na engenharia: fundamentos do desenvolvimento eficaz de produtos, métodos e aplicações. São Paulo: Edgard Blucher, 2005.
- PROJECT MANAGEMENT INSTITUTE. Um guia do conjunto de conhecimentos em gerenciamento de projetos: (guia PMBOK®). 3. ed. Newtown Square, Pennsylvania: Project Management Institute, 2004.
- LEAKE, James M. Manual de desenho técnico para engenharia: desenho, modelagem e visualização. Rio de Janeiro: LTC, 2010.

Referências Complementares

- CREDER, Hélio. Instalações elétricas. 15. ed. Rio de Janeiro: LTC, 2007.
- INSTITUTE, P. M. Um guia do conjunto de conhecimentos em gerenciamento de projetos. 3ª. ed. Newtown Square, Pennsylvania: Project Management Institute, 2004.
- KERZNER, H. Gestão de projetos: as melhores práticas. 2. ed. Porto Alebre: Bookman, 2006.
- KRATO, Hermann. Projetos de instalações elétricas. 4. ed. São Paulo: EPU, 1974.
- NEGRISOLI, Manoel Eduardo Miranda. Instalações elétricas: projetos prediais em baixa tensão. 3. ed. São Paulo: E. Blucher, 1987.

Disciplina:	CIÊNCIA DOS MATERIAIS
	ENG4.4

Referências Básicas

- CALLISTER, William D., Jr.; RETHWISCH, David G. Ciência e engenharia de materiais: uma introdução. Tradução de Sérgio Murilo Stamile Soares. 7. ed. Rio de Janeiro: LTC, c2008. xx, 705 p., il. ISBN 978-85-216-1595-8 (broch.)
- ASKELAND, Donald R.; PHULÉ, Pradeep Prabhakar. Ciência e engenharia dos materiais. São Paulo: Cengage Learning, 2008. xix; 594, il. ISBN 85-221-0598-7; 978-85-221-0598-4.
- SHACKELFORD, James F. Introduction to materials science for engineers. 7. ed. Upper Saddle River, N.J.: Pearson Prentice Hall, c2009. xii, 533, 33, 6, 14 p., il. ISBN 978-0-13-601260-3.

Referências Complementares

- MAMEDE FILHO, João. Instalações elétricas industriais. 7. ed. Rio de Janeiro: LTC, 2007. 914 p., il. ISBN 978-85-216-1520-0 (broch.).
- KULA, Daniel; TERNAUX, Élodie. Materiologia: o guia criativo de materiais e tecnologias.
 São Paulo: Senac São Paulo, 2012. 344 p. Inclui bibliografia e índice. ISBN 978-85-396-0194-3(enc.)
- SCHMIDT, Walfredo. Materiais elétricos. 2. ed. São Paulo: E. Blucher, 1979. 2v.
- NILSSON, James William; RIEDEL, Susan A. Circuitos elétricos. 8. ed. Rio de Janeiro: LTC, 2009. 574p., il. ISBN 978-85-7605-159-6 (broch.).
- MALVINO, Albert Paul. Eletrônica. Tradução de Romeu Abdo. 4. ed. São Paulo: Pearson Education do Brasil, c1997. 2 v., il. ISBN 978-85-346-0378-2 (v. 1). ISBN 85-346-0455-X (v. 2).
- TAVARES, Carlos Eduardo. Apostila de Ciência e Tecnologia dos Materiais. FEELT/UFU, 2009.

Disciplina:	RESISTÊNCIA DOS MATERIAIS
Abreviação:	ENG4.5

Referências Básicas

- HIBBELER, R.C. Resistência dos materiais. 7. ed.São Paulo: Pearson, 2010.
- BEER, Ferdinand Pierre. Mecânica vetorial para engenheiros: estática. 9. ed. Porto Alegre: AMGH, 2012.
- NASH, William A. Resistência dos materiais. 3. ed. São Paulo: McGraw-Hill, 1990.

- HIBBELER, R.C. Estática: mecânica para engenharia. 12. ed.São Paulo: Pearson Prentice Hall, 2011
- GERE, James M. Mecânica dos materiais. 7. ed. São Paulo: Cengage Learning, 2014.
- POPOV, E. P. (Egor Paul). Introdução à mecânica dos sólidos. São Paulo: Edgard Blucher, c1978.

- MELCONIAN, Sarkis. Mecânica técnica e resistência dos materiais. 18. ed. São Paulo: Érica, 2009.
- BOTELHO, Manoel Henrique Campos. Resistência dos materiais: para entender e gostar. 2. ed. São Paulo: E. Blucher, 2013.

Disciplina:	PLANEJAMENTO E CONTROLE DA PRODUÇÃO
Abreviação:	ENG4.6

- SLACK, Nigel; CHAMBERS, Stuart; JOHNSTON, Robert. Administração da produção. Tradução Henrique Luiz Corrêa. 3. ed. São Paulo: Atlas, 2009.
- SLACK, Nigel; CHAMBERS, Stuart; JOHNSTON, Robert. Administração da produção. Tradução Maria Teresa Corrêa de Oliveira, Fábio Alher; revisão técnica Henrique Luiz Corrêa. 2. ed. 8. Reimpresso, São Paulo: Atlas, 2008.
- DAVIS, Mark M.; AQUILANO, Nicholas J.; CHASE, Richard B. Fundamentos da administração da produção/ tradução Eduardo D'Agord Schann. [et al.]. Edição 3. ed. Porto Alegre: Bookman, 2001.

Referências Complementares

- MOREIRA, Daniel Augusto. Administração da produção e operações. 2. ed. São Paulo: Cengage Learning, 2008. 624 p. ISBN 978-85-221-0587-8.
- BLACK, J. T. O projeto da fábrica com futuro. Porto Alegre: Artes Médicas, 1998; [S.l.]: Bookman.
- TUBINO, Dalvio Ferrari. Planejamento e controle da produção: teoria e prática / Dalvio Ferrari Tubino. 2.ed. São Paulo: Atlas, 2009.
- LIKER, Jeffrey K. O modelo Toyota: 14 princípios de gestão do maior fabricante do mundo / Jeffrey K. Liker; tradução: Lene Belon Ribeiro; revisão técnica Marcelo Klippel. Porto Alegre: Bookman, 2005.
- MRP II / ERP: conceitos, uso e implantação; base para SAP, *Oracle Applications* e outros *Softwares* Integrados de Gestão / Henrique Luiz Corrêa, Irineu Gustavo Nogueira Gianesi, Mauro Caon. Edição 5. ed. São Paulo: Atlas, 2014.
- LIKER, Jeffrey K.; MEIER, David. O modelo Toyota: manual de aplicação: um guia prático para a implementação dos 4 PS da Toyota; tradução: Lene Belon Ribeiro. Porto Alegre: Bookman. 2007.
- CORRÊA, Henrique L.; CORRÊA, Carlos A. Administração de produção e de operações: manufatura e serviços: uma abordagem estratégica/ 3. Ed. São Paulo: Atlas, 2012.
- MARTINS, Petrônio G. Administração da produção fácil / Petrônio G. Martins, Fernando Laugeni. São Paulo: Saraiva, 2012.
- MARTINS, Petrônio G.; LAUGENI, Fernando P. Administração da produção. 3. ed. Revisado e ampliado. São Paulo: Editora Saraiva, 2015.

Disciplina:	FUNDAMENTOS DE TERMODINÂMICA E TRANSMISSÃO DE CALOR
Abreviação:	ENG4.7

Referências Básicas

- BORGNAKKE, C.; SONNTAG, R. E.; WYLEN V. Fundamentos de termodinâmica. 8.ed. São Paulo: Edgard Blücher, 2009.
- POTTER, M. C., SCOTT, E. P. Ciências térmicas: termodinâmica, mecânica dos fluidos e transmissão de calor. São Paulo: Thomson Learning, 2006.
- MORAN, M. J. et al. Introdução à engenharia de sistemas térmicos. 1. ed. Rio de Janeiro: LTC, 2005.

- INCROPERA, F. P.; De WITT, D. P. Fundamentos de transferência de calor e de massa. 5. ed. Rio de Janeiro: LTC, 2003. 698p.
- CREDER, H. Instalações de ar condicionado. 6 ed. Rio de Janeiro: LTC, 2004.
- IENO, G.; NEGRO, L. Termodinâmica. São Paulo: Pearson, 2004.
- HALLIDAY, David; RESNICK, Robert; KRANE, Kenneth. Física. 5.ed. Rio de Janeiro: LTC, 2007. v.2. 339p.
- RESNICK, Robert; HALLIDAY, David; KRANE, Kenneth S. Física 1. 5. ed. Rio de Janeiro: LTC, 2003. v.1.
- HOLMAN, Jack Philip. Transferência de calor. São Paulo: McGraw-Hill, 1983.
- KREITH, Frank. Princípios da transmissão de calor. São Paulo: Edgard Blucher, 1969.

Disciplina:	MECÂNICA DOS FLUIDOS
Abreviação:	ENG4.8

- FOX, R. W., PRITCHARD, P.J., MCDONALD, A. T.; Introdução à Mecânica dos Fluidos; Sétima Edição (4) sexta (6); Editora LTC; (12 unidades)
- POTTER, M. C., SCOTT, E. P., Ciências Térmicas Termodinâmica, Mecânica dos Fluidos e Transmissão de Calor, Editora Thomson. (12 unidades)
- BRUNETTI, F., Mecânica dos Fluidos, Editora Pearson (9 unidades)

Referências Complementares

- HOUGHTALEN, HWANG, AKAN, Engenharia Hidráulica, 4° Edição, Editora Pearson.
- MACINTYRE, A. J. Bombas e Instalações de Bombeamento; 2º Edição; Editora Guanabara.
- INCROPERA, F. P., D. P. DEWITT, Fundamentos de Transferência de Calor e de Massa, 5° Edição, Editora LTC, 2003.
- HALLIDAY, David; RESNICK, Robert; KRANE, Kenneth. Física. 5.ed. Rio de Janeiro: LTC, 2007. V.2. 339p.
- WHITE, F. M., Mecânica dos Fluidos, Editora McGraw Hill, 4º Edição

Disciplina:	MANUTENÇÃO INDUSTRIAL
Abreviação:	ENG4.9

Referências Básicas

- KARDEC, Alan. NASCIF, Júlio. Manutenção: função estratégica. 3. ed. Rio de Janeiro: Qualitymark, 2009.
- VERRI, Luiz Alberto. Sucesso em paradas de manutenção. Rio de Janeiro: Qualitymark, 2012.
- FOGLIATTO, Flávio Sanson; RIBEIRO, José Luis Duarte D. R. Confiabilidade e manutenção industrial. Rio de Janeiro. Editora Elsevier, 2009.

Referências Complementares

• KARDEC, Alan, ARCURI, Rogério, CABRAL, Nelson. Gestão estratégica e avaliação do desempenho. Rio de Janeiro: Qualimark, 2005.

- KARDEC, Alan, NASCIF, Júlio, BARONI, Tarcísio. Gestão estratégica e técnicas preditivas. Rio de Janeiro. Qualitymark, 2002.
- SANTOS, Valdir Aparecido dos. Manual prático da manutenção industrial. 2. ed. São Paulo: Ícone, 2007.
- TAKAHASHI, Yoshikazu, OSADA, Takashi. TPM/MPT: manutenção produtiva total. 4. ed. São Paulo: Instituto IMAM, 2010.
- KARDEC, Alan; ARCURI, Rogério; CABRAL, Nelson. Gestão estratégica e avaliação do desempenho. Rio de Janeiro: Qualitymark, 2002

EIXO 05: ENGENHARIA MECÂNICA

Disciplina:	METROLOGIA
Abreviação:	MEC5.1

Referências Básicas

- ALBERTAZZI, Armando. Souza, André R. Fundamentos de Metrologia Científica e Industrial. Barueri, SP: Editora Manole. 2013.
- LIRA, F. A. Metrologia na Indústria. São Paulo: Ed. Erica. 7ª ed. revisada. 2010.
- LIRA, F. A. Metrologia na Indústria. São Paulo: Ed. Erica. 6ª ed. revisada. 2007.
- LIRA, F. A. Metrologia na Indústria. São Paulo: Ed. Erica. 2ª ed. revisada. 2002. Total dessa publicação, em três edições
- SILVA NETO, J. C. Metrologia e Controle Dimensional: conceitos, normas e aplicações. Rio de Janeiro: Elsevier, c2012.

Referências Complementares

- DIAS, J. L. M. Medida, normalização e qualidade: aspectos da história da metrologia no Brasil. Rio de Janeiro: INMETRO, 1998.
- SCHMIDT, W. Metrologia Aplicada. São Paulo. Ed. EPSE. 2003.
- SAY, M. G. Manual do engenheiro eletricista. São Paulo. Editora Hemus.
- Fundação Roberto Marinho. TELECURSO 2000: Curso Profissionalizante: Mecânica: Metrologia. Rio de Janeiro: Globo, c1996.
- Secretaria de Educação Profissional e Tecnológica. Caderno de Aulas Práticas da Instrumentação Industrial. Brasília: IBF. 2016.

Disciplina:	ESTÁTICA
Abreviação:	MEC5.2

Referências Básicas

- BEER, F. P., JOHNSTON, E. R., Mecânica Vetorial para Engenheiros, 9° ed. Porto Alegre. AMGH, 2012.
- HIBBELER, R. C., Estática Mecânica para Engenharia, 12° ed. São Paulo. Pearson Education do Brasil, 2008.
- MERIAM, J. L. KRAIGE, L. G.; Mecânica: Estática, 6ª ed. Rio de Janeiro. LTC, 2009.

Referências Complementares

- RESNICK, R., HALLIDAY, D., KRANE, K. Física 1. 5° ed. Rio de Janeiro. LTC, 2004.
- SEARS, Francis; ZEMANSKY, Mark Waldo. Física 1: mecânica. 12.ed. São Paulo. Addison Wesley, 2008.
- BORESI, A. P., SCHMIDT, R. J., Estática, São Paulo. Pioneira Thomson Learning, 2003.
- SOUZA, H. R.de. Estática. Revisão de Francesco Provenza. São Paulo. Protec, 1982.
- STERMAN, H. Mecânica: cinemática, estática e dinâmica. 2. Ed. São Paulo. Brasiliense, 1979.

Disciplina:	PROCESSOS DE FABRICAÇÃO
Abreviação:	MEC5.3

Referências Básicas

- MARQUES, P. Villani; MODENESI, P. José e Bracarense, Alexandre Queiroz. Soldagem: fundamentos e tecnologia. Belo Horizonte: Editora UFMG, 2005.
- SILVA, André Luiz V. da Costa, MEI, Paulo Roberto. Aços e ligas especiais. 3. ed. Aços e ligas especiais. 3. ed. São Paulo: Edgard Blucher, c2010.

• HELMAN, H., CETLIN, P.R. Fundamentos da conformação mecânica dos metais. Rio de Janeiro: Editora Guanabara Dois, 1983.

Referências Complementares

- CETLIN, Paulo Roberto, HELMAN, Horácio. Fundamentos da conformação mecânica dos metais. 2. ed. São Paulo: Artliber, c2005.
- FERRARESI, D. Fundamentos da usinagem dos metais. São Paulo: Edgard Blucher Ltda, c1970.
- HELMAN, Horácio, CETLIN, Paulo Roberto. Fundamentos da conformação mecânica dos metais. 2. ed. São Paulo: Artliber, c2005.
- QUITES, A. M. Introdução à soldagem a arco voltaico. Florianópolis: Soldasoft, 2002.
- LIMA, Vinícius Rabello de Abreu. Fundamentos de caldeiraria e tubulação industrial. Rio de Janeiro: Ciência Moderna, 2012.
- SCOTTI, Américo, PONOMAREV, Vladimir. Soldagem MIG/MAG: melhor entendimento, melhor desempenho. 2. ed. São Paulo: Artliber, 2014.

Disciplina:	LABORATÓRIO DE PROCESSOS DE FABRICAÇÃO
Abreviação:	MEC5.4

Referências Básicas

- FERRARESI, D. Usinagem dos metais: Fundamentos da usinagem dos metais. São Paulo: E. Blucher, 1970.
- MACHADO, Alisson Rocha. Teoria da usinagem dos materiais. São Paulo: Blucher, 2009.
- DINIZ, Anselmo Eduardo, MARCONDES, Francisco Carlos, COPPINI, Nivaldo Lemos. Tecnologia da usinagem dos materiais. 5. ed. São Paulo: Artliber, 2006.
- CHIAVERINI, Vicente. Tecnologia Mecânica. vol II. São Paulo: McGraw-Hill, 1986.

Referências Complementares

- FERRARESI, D. Usinagem dos metais: Fundamentos da usinagem dos metais. São Paulo: E. Blucher, 1970.
- MACHADO, Alisson Rocha. Teoria da usinagem dos materiais. São Paulo: Blucher, 2009.
- DINIZ, Anselmo Eduardo, MARCONDES, Francisco Carlos, COPPINI, Nivaldo Lemos. Tecnologia da usinagem dos materiais. 5. ed. São Paulo: Artliber, 2006.
- CHIAVERINI, Vicente. Tecnologia Mecânica. vol II. São Paulo: McGraw-Hill, 1986.

Disciplina:	MECÂNICA GERAL
Abreviação:	MEC5.5

Referências Básicas

- BEER, F. P., JOHNSTON, E. R., Mecânica Vetorial para Engenheiros cinemática e dinâmica. 5° ed. São Paulo: Makron Books, 1994.
- HIBBELER, R. C., Dinâmica Mecânica para Engenharia, 12° ed. São Paulo: Pearson Education do Brasil, 2010.
- HALLIDAY, D., RESNICK, R., KRANE, K. S., Física. 4^a ed. Rio de Janeiro: LTC, 1996.

- MERIAN, J. L., Kraige, L.G., Mecânica para engenharia Dinâmica, 6ª ed. Rio de Janeiro: LTC, 2009.
- SEARS, Francis; ZEMANSKY, Mark Waldo. Física 1: mecânica. 12.ed. São Paulo: Addison Wesley, 2008.
- SANTOS, I. F., Dinâmica de sistemas mecânicos: modelagem, simulação, visualização, verificação. São Paulo: Makron Books, 2001.
- BORESI, A. P., Dinâmica, São Paulo: Pioneira Thomson Learning, 2003.
- SOUZA, S. Mecânica do corpo rígido, Rio de Janeiro: LTC, 2011

Disciplina:	HIDRÁULICA E PNEUMÁTICA
Abreviação:	MEC5.6

- FIALHO, Arivelto Bustamante. Automação Hidráulica: projetos, dimensionamento e análise de circuitos. 5.ed. São Paulo: Érica, 2007
- FIALHO, Arivelto Bustamante. Automação pneumática: projetos, dimensionamento e análise de circuitos. 6. ed. São Paulo: Érica, 2007.
- BONACORSO, Nelso Gauze. Automação eletropneumática. 10. ed. São Paulo: Érica, 2007.

Referências Complementares

- PARKER Hannifin. Divisão Schrader Bellows. Tecnologia hidráulica industrial. Jacareí: Parker Hannifin, [19--].
- VICKERS. Manual de hidráulica mobile M 1990 BR. São Paulo: [s.n.], 1980.
- PALMIERI, Antônio Carlos. Manual de Hidráulica Básica. 2. ed. Porto Alegre: [s.n.]
- FESTO AG & Co. KG. Tecnologias da informação: pneumática e eletrônica. Esslingen: Festo AG & Co. KG, 2013.
- STEWART, Harry L. Pneumática e hidráulica. 3. ed. Curitiba: Hemus, [200-].

Disciplina:	SISTEMAS INTEGRADOS DE MANUFATURA
Abreviação:	MEC5.7

Referências Básicas

- AGUIRRE, Luis Antônio; BRUCIAPAGLIA, Augusto Humberto; MIYAGI, Paulo Eigi; TAKAHASHI, Ricardo Hirosh Caldeira. Enciclopédia de automática: controle e automação. 1. ed. São Paulo: Blucher, 2007.
- BLACK, J. T. O projeto da fábrica com futuro. Trad. Gustavo Kannenberg Porto Alegre: Artes Médicas, 1998.
- LEVITT, Theodore e outros. Como os executivos eficientes usam os sistemas de informação. São Paulo: Nova Cultural, v. 5, 97p. 1986.
- CAMPOS, Mario Massa de. Sistemas inteligentes em controle e automação de processos / Mário Massa de Campos, Kaku Saito. Rio de Janeiro: Ciência Moderna, 2004.
- SLACK, N., Chambers, S. Johnston, R. Administração da Produção, 2ª Edição, Editora Atlas, 2008.

- COSTA, L. S. S., Caulliraux, H. M. Manufatura Integrada por Computador. Editora Campus, 1995.a
- PIDD, M. Modelagem Empresarial: ferramentas para a tomada de decisão. Editora Artes Médicas Sul Ltda. 1998.
- REZENDE, S. O. Sistemas Inteligentes Fundamentos e Aplicações. Editora Manole, 2003.
- RICH, E. Knight, K. Inteligência Artificial 2a Edição. Makron Books do Brasil. Editora, 1994.
- RUSSELL, Stuart J. Inteligência artificial / Stuart Russell. Peter Norvig; tradução Regina Célia Simille de Macedo. Título idioma original: Artificial intelligence. Edição 3. ed. Rio de Janeiro: Elsevier, c2013.
- SLACK, N. Vantagem Competitiva em Manufatura. 2a Edição, Editora Atlas, 2002.
- SLACK, N., Chambers, S. Johnston, R. Administração da Produção. 2ª Edição, Editora Atlas, 2002
- SLACK, Nigel. Administração da produção / Nigel Slack, Stuart Chambers, Robert Johnston; tradução Henrique Luiz Corrêa. Título idioma original: Operations management. Edição 3. ed. São Paulo: Atlas, 2009.

- STAIR, R. M., Reynolds, G. W. Princípios de Sistemas de Informação. 4ª Edição, LTC Editora, 2002.
- TERRA, L. D. B., Markus, M., Costa Jr., P. P. Manufatura Integrada por Computador. Fundação CEFETMINAS, 1995.

EIXO 06: ELÉTRICA E CONVERSÃO

Disciplina:	CIRCUITOS ELÉTRICOS I
Abreviação:	ELE6.1

Referências Básicas

- BURIAN JÚNIOR, Yaro, LYRA, Ana Cristina C.. Circuitos elétricos. São Paulo: Prentice Hall Brasil, 2006.
- O' MALLEY, John. Análise de circuitos. 2. ed. São Paulo: Makron Books, 1994.
- IRWIN, J. David. Introdução á análise de circuitos. Rio de Janeiro: LTC, c2005.

Referências Complementares

- IRWIN, J. David. Análise de circuitos em engenharia. 4. ed. São Paulo: Makron Books, 2000.
- DORF, Richard C. Introdução aos circuitos elétricos. 7. ed. Rio de Janeiro, LTC, 2008.
- NILSSON, J. W., Riedel, Susan A. Circuitos elétricos. 8. ed. Rio de Janeiro, LTC, 2009.
- JOHNSON, David E. Fundamentos de análise de circuitos. Rio de Janeiro: LTC, 2000.
- MEIRELES, V. C. Circuitos elétricos. 4. ed. Rio de Janeiro: LTC, 2007.

Disciplina:	LABORATÓRIO DE CIRCUITOS ELÉTRICOS I
Abreviação:	ELE6.2

Referências Básicas

- BURIAN JÚNIOR, Yaro, LYRA, Ana Cristina C.. Circuitos elétricos. São Paulo: Prentice Hall Brasil, 2006.
- O' MALLEY, John. Análise de circuitos. 2. ed. São Paulo: Makron Books, 1994.
- IRWIN, J. David. Introdução á análise de circuitos. Rio de Janeiro: LTC, c2005.

Referências Complementares

- IRWIN, J. David. Análise de circuitos em engenharia. 4. ed. São Paulo: Makron Books, 2000.
- DORF, Richard C. Introdução aos circuitos elétricos. 7. ed. Rio de Janeiro, LTC, 2008.
- NILSSON, J. W., Riedel, Susan A. Circuitos elétricos. 8. ed. Rio de Janeiro, LTC, 2009.
- JOHNSON, David E. Fundamentos de análise de circuitos. Rio de Janeiro: LTC, 2000.
- MEIRELES, V. C. Circuitos elétricos. 4. ed. Rio de Janeiro: LTC, 2007.

Disciplina:	CIRCUITOS ELÉTRICOS II
Abreviação:	ELE6.3

Referências Básicas

- BURIAN JÚNIOR, Yaro, LYRA, Ana Cristina C.. Circuitos elétricos. São Paulo: Prentice Hall Brasil, 2006.
- O' MALLEY, John. Análise de circuitos. 2. ed. São Paulo: Makron Books, 1994.
- IRWIN, J. David. Introdução á análise de circuitos. Rio de Janeiro: LTC, c2005.

- IRWIN, J. David. Análise de circuitos em engenharia. 4. ed. São Paulo: Makron Books, 2000.
- DORF, Richard C. Introdução aos circuitos elétricos. 7. ed. Rio de Janeiro, LTC, 2008.
- NILSSON, J. W., Riedel, Susan A. Circuitos elétricos. 8. ed. Rio de Janeiro, LTC, 2009.
- JOHNSON, David E. Fundamentos de análise de circuitos. Rio de Janeiro: LTC, 2000.
- MEIRELES, V. C. Circuitos elétricos. 4. ed. Rio de Janeiro: LTC, 2007.

Disciplina:	MÁQUINAS ELÉTRICAS
Abreviação:	ELE6.4

- FITZGERALD, A. E. Máquinas Elétricas: com introdução à eletrônica de potência. 6. ed.Porto Alegre: Bookman, 2006.
- DEL TORO, V. Fundamentos de Máquinas Elétricas. Rio de Janeiro: PHB, 1994.
- KOSOW, I. Máquinas Elétricas e Transformadores. 15. ed. São Paulo: Globo, 2005.

Referências Complementares

- FITZGERALD, A. E. Máquinas Elétricas, São Paulo: McGrawHill,1975.
- FILIPPO FILHO, Guilherme. Motor de Indução. São Paulo: Érica, 2000.
- ARNOLD, Robert. Máquinas Elétricas. São Paulo: EPU, 1975.
- MARTIGNONI, Alfonso. Transformadores, São Paulo: Globo, 1991.
- SIMONE, G.A., CREPPE, E. C. Conversão Eletromecânica de Energia. São Paulo: Érica, 1999.

Disciplina:	ACIONAMENTOS ELETROELETRÔNICOS
Abreviação:	ELE6.5

Referências Básicas

- FITZGERALD, A. E. Máquinas Elétricas: com introdução à eletrônica de potência. 6. ed. Porto Alegre: Bookman, 2006.
- NASCIMENTO, G. Comandos Elétricos: teoria e atividades. São Paulo: Érica, c2011.
- FRANCHI, C. M., Acionamentos Elétricos, 4. ed. Ed. Érica, 2013
- FILIPPO FILHO, Guilherme. Motor de indução. São Paulo: Érica, 2000.

Referências Complementares

- KOSOW, I. Máquinas Elétricas e Transformadores. 15. ed. São Paulo: Globo, 2005.
- DEL TORO, V., et. al. Fundamentos de Máquinas Elétricas. Rio de Janeiro: LTC, c1994.
- MAMEDE, J. Instalações Elétricas Industriais. Rio de Janeiro: LTC, 2007.
- FILIPPO FILHO, Guilherme. Motor de Indução. São Paulo: Érica, 2000.
- ALMEIDA, Jason E. de. 3. ed. Curitiba, Hemus, c2004.

Disciplina:	LABORATÓRIO DE ACIONAMENTOS ELETROELETRÔNICOS
Abreviação:	ELE6.6

Referências Básicas

- FITZGERALD, A. E. Máquinas Elétricas: com introdução à eletrônica de potência. 6. ed. Porto Alegre: Bookman, 2006.
- NASCIMENTO, G. Comandos Elétricos: teoria e atividades. São paulo: Érica, c2011.
- FRANCHI, C. M., Acionamentos Elétricos. 4. ed. Ed. Érica, 2013
- FILIPPO FILHO, Guilherme. Motor de Indução. São Paulo: Érica, 2000.

- I.KOSOW, Maguinas Elétricas e Transformadores. 15. ed. São Paulo: Globo, 2005.
- DEL TORO, V. et. al. Fundamentos de Máquinas Elétricas. Rio de Janeiro: LTC, c1994.
- MAMEDE, J. Instalações Elétricas Industriais. Rio de Janeiro, LTC, 2007.
- FILIPPO FILHO, Guilherme. Motor de indução. São Paulo: Érica, 2000.
- ALMEIDA, Jason E. de. 3. ed. Curitiba, Hemus, c2004.

EIXO 07: ELETRÔNICA

Disciplina:	ELETRÔNICA APLICADA
Abreviação:	ELT7.1

Referências Básicas

- BOYLESTAD, Robert L.; NASHELSKY, Louis. Dispositivos eletrônicos e teoria de circuitos. 8. ed. São Paulo: Pearson Education do Brasil, c2004.
- MALVINO, Albert Paul. Eletrônica. v. 2. 4. ed. São Paulo: Pearson Education do Brasil, c1997.
- ALBUQUERQUE, Rômulo Oliveira. Utilizando eletrônica com AO, SCR, TRIAC, UJT, PUT, CI 555, LDR, LED, IGBT e FET de potência. 2. ed. São Paulo: Érica, 2012.

Referências Complementares

- MILLMAN, Jacob; HALKIAS, Christos C. Eletrônica: dispositivos e circuitos. São Paulo: Mc-Graw-Hill do Brasil, 1981. 2v.
- SEDRA, Adel. S.; SMITH, Kenneth C. Microeletrônica. 5. ed. São Paulo: Makron, c2007. 2 v.
- CRUZ, Eduardo Cesar Alves; CHOUERI JÚNIOR, Salomão. Eletrônica aplicada. 2. ed. São Paulo: Érica, 2008.
- CHOUERI JÚNIOR, Salomão, MARQUES, Ângelo Eduardo B., ALVES CRUZ, Eduardo Cesar. Dispositivos semicondutores: diodos e transistores. 7. ed. São Paulo: Érica, 2002.
- GRUITER, Arthur François de. Amplificadores operacionais: fundamentos e aplicações. São Paulo: McGraw-Hill, 1988.
- LANDO, Roberto Antônio; ALVES, Serg Rios. Amplificador operacional. 3. ed. São Paulo: Érica, 1986.

Disciplina:	LABORATÓRIO DE ELETRÔNICA APLICADA
Abreviação:	ELT7.2

Referências Básicas

- BOYLESTAD, Robert L.; NASHELSKY, Louis. Dispositivos eletrônicos e teoria de circuitos. 8. ed. São Paulo: Pearson Education do Brasil, c2004.
- CAPUANO, Francisco G., MARINO, Maria Aparecida Mendes. Laboratório de eletricidade e eletrônica: [teoria e prática]. 24. ed. São Paulo: Érica, 2007.
- PERTENCE JÚNIOR, Antonio. Amplificadores operacionais e filtros ativos: teoria, projetos, aplicações e laboratório. 6. ed. Porto Alegre: Bookman, c2003.

- MALVINO, Albert Paul. Eletrônica. v. 2. 4. ed. São Paulo: Pearson Education do Brasil, c1997.
- ALBUQUERQUE, Rômulo Oliveira. Utilizando eletrônica com AO, SCR, TRIAC, UJT, PUT, CI 555, LDR, LED, IGBT e FET de potência. 2. ed. São Paulo: Érica, 2012.
- MALVINO, Albert Paul. Eletrônica no laboratório. São Paulo: Makron Books do Brasil, c1992.
- GRUITER, Arthur François de. Amplificadores operacionais: fundamentos e aplicações. São Paulo: McGraw-Hill, 1988.
- MARQUES, Ângelo Eduardo B.; CHOUERI JÚNIOR, Salomão; CRUZ, Eduardo Cesar Alves. Dispositivos semicondutores: diodos e transistores. 12. ed. São Paulo: Érica, 2008.

Disciplina:	INSTRUMENTAÇÃO ELETRÔNICA
Abreviação:	ELT7.3

- BEGA, Egídio Alberto (organizador); Gerard Jean Delmée ... [et al.]. Instrumentação industrial.
 2. ed. Rio de Janeiro: Interciência, 2006.
- BALBINOT, Alexandre. Instrumentação e fundamentos de medidas: volume 1. Rio de Janeiro: Livros Técnicos e Científicos, 2006.
- BALBINOT, Alexandre. Instrumentação e fundamentos de medidas: volume 2. Rio de Janeiro: Livros Técnicos e Científicos, 2007.
- THOMAZINI, Daniel. Sensores industriais: fundamentos e aplicações. 4. ed., rev. São Paulo: Érica, 2007.

Referências Complementares

- CAMPOS, Mario Cesar M. Massa de. Controles típicos de equipamentos e processos industriais. São Paulo: E. Blucher, 2006.
- FIALHO, Arivelto Bustamante. Instrumentação industrial: conceitos, aplicações e análises. 6. ed. São Paulo: Érica, 2007.
- CARVALHO, Jorge Leite Martins de. Sistemas de controle automático. Rio de Janeiro: LTC, 2000.
- BOLTON, W. (William). Engenharia de controle. São Paulo: Makron Books, c1995.
- AGUIRRE, Luis Antônio. Enciclopédia de automática: controle e automação. São Paulo: Blucher, c2007.
- SOISSON, Harold E. Instrumentação Industrial. São Paulo: Hemus, [19 -].
- SIGHIERI, Luciano. Controle automático de processos industriais: instrumentação. 2. ed. São Paulo: Blucher, c1973.

Disciplina:	LABORATÓRIO DE INSTRUMENTAÇÃO ELETRÔNICA
Abreviação:	ELT7.4

Referências Básicas

- BEGA, Egídio Alberto (organizador) ; Gerard Jean Delmée ... [et al.]. Instrumentação industrial. 2. ed. Rio de Janeiro: Interciência, 2006.
- BALBINOT, Alexandre. Instrumentação e fundamentos de medidas: volume 1. Rio de Janeiro: Livros Técnicos e Científicos, 2006.
- BALBINOT, Alexandre. Instrumentação e fundamentos de medidas: volume 2. Rio de Janeiro: Livros Técnicos e Científicos, 2007.
- THOMAZINI, Daniel. Sensores industriais: fundamentos e aplicações. 4. ed. rev. São Paulo: Érica, 2007.

- CAMPOS, Mario Cesar M. Massa de. Controles típicos de equipamentos e processos industriais. São Paulo: E. Blucher, 2006.
- FIALHO, Arivelto Bustamante. Instrumentação industrial: conceitos, aplicações e análises. 6. ed. São Paulo: Érica, 2007.
- CARVALHO, Jorge Leite Martins de. Sistemas de controle automático. Rio de Janeiro: LTC, 2000
- BOLTON, W. (William). Engenharia de controle. São Paulo: Makron Books, c1995.
- AGUIRRE, Luis Antonio. Enciclopédia de automática: controle e automação. São Paulo: Blucher, c2007.
- SOISSON, Harold E. Instrumentação Industrial. São Paulo: Hemus, [19 -].
- SIGHIERI, Luciano. Controle automático de processos industriais: instrumentação. 2. ed. São Paulo: Blucher, c1973.

Disciplina:	SISTEMAS DIGITAIS
Abreviação:	ELT7.5

- TOCCI, R.J., WIDMER, N.S. Sistemas Digitais: Princípios e Aplicações, 11a ed. São Paulo: Prentice-Hall, 2003.
- CAPUANO, Francisco G.; IDOETA, Ivan Valeije. Elementos de eletrônica digital. 37. ed. São Paulo: Érica, 2006.
- BIGNELL, J. B. DONOVAN, R. L. Eletrônica Digital: Lógica Combinacional. São Paulo: Makron Books, Vol. 1, 1995.

Referências Complementares

- Cruz, Antônio C. et. al "Circuitos Digitais" Editora Érica, 1996.
- Malvino, Albert P. "Eletrônica Digital Vols. I e II" Editora Mcgraw-Hill, 1987.
- BIGNELL, J. B. DONOVAN, R. L. Eletrônica Digital: Lógica Seqüêncial. São Paulo: Makron Books, Vol. 2, 1995.
- LEONARD, W. Control of Electrical Drives, 2nd Ed., New York: Springer-Verlag, 1996.
- UYEMURA, J.P. Sistemas Digitais: uma Abordagem Integrada, São Paulo: Thomson, 2002.

Disciplina:	LABORATÓRIO DE SISTEMAS DIGITAIS
Abreviação:	ELT7.6

Referências Básicas

- TOCCI, R.J., WIDMER, N.S. Sistemas Digitais: Princípios e Aplicações, 11a ed. São Paulo: Prentice-Hall, 2003.
- CAPUANO, Francisco G.; IDOETA, Ivan Valeije. Elementos de eletrônica digital. 37. ed. São Paulo: Érica, 2006.
- BIGNELL, J. B. DONOVAN, R. L. Eletrônica Digital: Lógica Combinacional. São Paulo: Makron Books, Vol. 1, 1995.

Referências Complementares

- Cruz, Antônio C. et. al "Circuitos Digitais" Editora Érica, 1996.
- Malvino, Albert P. "Eletrônica Digital Vols. I e II" Editora Mcgraw-Hill, 1987.
- BIGNELL, J. B. DONOVAN, R. L. Eletrônica Digital: Lógica Seqüêncial. São Paulo: Makron Books, Vol. 2, 1995.
- LEONARD, W. Control of Electrical Drives, 2nd Ed., New York: Springer-Verlag, 1996.
- UYEMURA, J.P. Sistemas Digitais: uma Abordagem Integrada, São Paulo: Thomson, 2002.

Disciplina:	SISTEMAS MICROPROCESSADOS
Abreviação:	ELT7.7

Referências Básicas

- SOUZA, David José de. Desbravando o PIC: ampliado e atualizado para PIC 16F628A. 12. ed. São Paulo: Érica, 2008.
- PEREIRA, F. Microcontroladores PIC: programação em C. 7. ed. São Paulo: Érica, 2007.
- PEREIRA, F. Microcontrolador PIC18 detalhado: hardware e software. São Paulo: Érica, 2010.
- SOUSA, Daniel Rodrigues de. Microcontroladores ARM7: (Philips família LPC213x) : o poder dos 32 bits : teoria e prática. São Paulo: Érica, 2006.
- NICOLOSI, Denys Emílio Campion. Laboratório de microcontroladores: família 8051. São Paulo: Érica, 2002.

- SOUZA, David José de; LAVINIA; Nicolás César. Conectando o PIC 16F877A : recursos avançados. 3. ed. São Paulo: Érica, 2006.
- SOUSA, Daniel Rodrigues de. SOUZA, David José de. Desbravando o PIC24 : conheça os microcontroladores de 16 bits. São Paulo: Érica, 2008.

- Souza, David José de, 1971 Desbravando o PIC: ampliando e atualizando para o PIC 16F628A 11ª ed. São Paulo: Érica, 2007.
- MALVINO, Albert Paul. Microcomputadores e microprocessadores. São Paulo: MacGraw Hill do Brasil, 1985.
- NICOLOSI. Denys Emílio Campion. Laboratório de microprocessadores: família 8051: treino de instruções, hardware e software. São Paulo: Érica, 2002.
- SILVA JUNIOR, Vidal Pereira da. Aplicações práticas do microcontrolador 8051. São Paulo: Érica, 1994.

Disciplina:	LABORATÓRIO DE SISTEMAS MICROPROCESSADOS
Abreviação:	ELT7.8

- SOUZA, David José de. Desbravando o PIC: ampliado e atualizado para PIC 16F628A. 12. ed. São Paulo: Érica, 2008.
- PEREIRA, F. Microcontroladores PIC: programação em C. 7. ed. São Paulo: Érica, 2007.
- PEREIRA, F. Microcontrolador PIC18 detalhado: hardware e software. São Paulo: Érica, 2010.
- SOUSA, Daniel Rodrigues de. Microcontroladores ARM7: (Philips família LPC213x) : o poder dos 32 bits : teoria e prática. São Paulo: Érica, 2006.
- NICOLOSI, Denys Emílio Campion. Laboratório de microcontroladores: família 8051. São Paulo: Érica, 2002.

Referências Complementares

- SOUZA, David José de; LAVINIA; Nicolás César. Conectando o PIC 16F877A: recursos avançados. 3. ed. São Paulo: Érica, 2006.
- SOUSA, Daniel Rodrigues de. SOUZA, David José de. Desbravando o PIC24: conheça os microcontroladores de 16 bits. São Paulo: Érica, 2008.
- Souza, David José de, 1971 Desbravando o PIC: ampliando e atualizando para o PIC 16F628A 11ª ed. São Paulo: Érica, 2007.
- MALVINO, Albert Paul. Microcomputadores e microprocessadores. São Paulo: MacGraw Hill do Brasil, 1985.
- NICOLOSI. Denys Emílio Campion. Laboratório de microprocessadores: família 8051: treino de instruções, hardware e software. São Paulo: Érica, 2002.
- SILVA JUNIOR, Vidal Pereira da. Aplicações práticas do microcontrolador 8051. São Paulo: Érica, 1994.

EIXO 08: CONTROLES

Disciplina:	CONTROLE E AUTOMAÇÃO
Abreviação:	CTR8.1

Referências Básicas

- BEGA, Egídio Alberto; Gerard Jean Delmée. [et al.]. Instrumentação industrial.
 2. ed. Rio de Janeiro: Interciência, 2006.
- ALVES, José Luiz Loureiro. Instrumentação, controle e automação de processos. Rio de Janeiro: LTC, c2005.
- CAMPOS, Mario Cesar M. Massa de. Controles típicos de equipamentos e processos industriais. São Paulo: E. Blucher, 2006.

Referências Complementares

- BALBINOT, Alexandre. Instrumentação e fundamentos de medidas: volume 1. Rio de Janeiro: Livros Técnicos e Científicos, 2006.
- BALBINOT, Alexandre. Instrumentação e fundamentos de medidas: volume 2. Rio de Janeiro: Livros Técnicos e Científicos, 2007.
- FIALHO, Arivelto Bustamante. Instrumentação industrial: conceitos, aplicações e análises. 6. ed. São Paulo: Érica, 2007. FIALHO, Arivelto Bustamante. Instrumentação industrial: conceitos, aplicações e análises. 6. ed. São Paulo: Érica, 2007.
- CARVALHO, Jorge Leite Martins de. Sistemas de controle automático. Rio de Janeiro: LTC, 2000.
- BOLTON, W. (William). Engenharia de controle. São Paulo: Makron Books, c1995.
- AGUIRRE, Luis Antonio. Enciclopédia de automática: controle e automação. São Paulo: Blucher, c2007.
- PHILLIPS, Charles L. Sistemas de controle e realimentação. São Paulo: Makron Books, c1997.
- OLIVEIRA, Júlio César Peixoto de. Controlador programável. São Paulo: Makron Books, 1993.
- TORREIRA, Raul Peragallo. Salas limpas: projeto, instalação, manutenção . São Paulo: Hemus, [20--].
- SIGHIERI, Luciano. Controle automático de processos industriais: instrumentação. 2. ed. São Paulo: Blucher, c1973.

Disciplina:	LABORATÓRIO DE CONTROLE E AUTOMAÇÃO
Abreviação:	CTR8.2

Referências Básicas

- BEGA, Egídio Alberto; Gerard Jean Delmée. [et al.]. Instrumentação industrial.
 2. ed. Rio de Janeiro: Interciência, 2006.
- ALVES, José Luiz Loureiro. Instrumentação, controle e automação de processos. Rio de Janeiro: LTC, c2005.
- CAMPOS, Mario Cesar M. Massa de. Controles típicos de equipamentos e processos industriais. São Paulo: E. Blucher, 2006.

- BALBINOT, Alexandre. Instrumentação e fundamentos de medidas: volume 1. Rio de Janeiro: Livros Técnicos e Científicos, 2006.
- BALBINOT, Alexandre. Instrumentação e fundamentos de medidas: volume 2. Rio de Janeiro: Livros Técnicos e Científicos, 2007.
- FIALHO, Arivelto Bustamante. Instrumentação industrial: conceitos, aplicações e análises. 6. ed. São Paulo: Érica, 2007. FIALHO, Arivelto Bustamante. Instrumentação industrial: conceitos, aplicações e análises. 6. ed. São Paulo: Érica, 2007.
- CARVALHO, Jorge Leite Martins de. Sistemas de controle automático. Rio de Janeiro: LTC, 2000
- BOLTON, W. (William). Engenharia de controle. São Paulo: Makron Books, c1995.
- AGUIRRE, Luis Antonio. Enciclopédia de automática: controle e automação. São Paulo: Blucher, c2007.

- PHILLIPS, Charles L. Sistemas de controle e realimentação. São Paulo: Makron Books, c1997.
- OLIVEIRA, Júlio César Peixoto de. Controlador programável. São Paulo: Makron Books, 1993.
- TORREIRA, Raul Peragallo. Salas limpas: projeto, instalação, manutenção. São Paulo: Hemus, [20--].
- SIGHIERI, Luciano. Controle automático de processos industriais: instrumentação. 2. ed. São Paulo: Blucher, c1973.

Disciplina:	CONTROLADORES LÓGICO PROGRAMÁVEIS
Abreviação:	CTR8.3

- FRANCHI, C. M.; CAMARGO, V. L. A. de. Controladores Lógico Programáveis: Sistemas Discretos. 2. ed. São Paulo: Érica, 2009.
- PRUDENTE, F. Automação Industrial PLC: Teoria e Aplicações: Curso Básico. Rio de Janeiro: LTC, 2011.
- GEORGINI, M. Automação Aplicada: Descrição e Implementação de Sistemas Sequenciais com PLCs. São Paulo: Érica, 2000.

Referências Complementares

- MORAES, Cícero Couto de; CASTRUCCI, Plínio de Lauro. Engenharia de Automação Industrial. 2. ed. Rio de Janeiro: LTC, 2007. 506 p.
- ROQUE, Luiz Alberto Oliveira Lima. Automação de processos com linguagem Ladder e sistemas supervisórios. Rio de Janeiro: LTC, 2014.
- SILVEIRA, Paulo Rogério da. Automação e controle discreto. 9. ed. São Paulo: Érica, 2009.
- NATALE, Ferdinando. Automação industrial. 9. ed. São Paulo: Érica, 2007.
- OLIVEIRA, Júlio César Peixoto de. Controlador programável. São Paulo: Makron Books, 1993.

Disciplina:	SISTEMAS DE CONTROLE DE PROCESSOS CONTÍNUOS
Abreviação:	CTR8.4

Referências Básicas

- SMITH, Carlos A. Princípios e prática do controle automático de processo. 3. ed. Rio de Janeiro: LTC, c2008.
- MAYA, Paulo Alvaro; LEONARDI, Fabrizio. Controle essencial. S\u00e4o Paulo: Prentice Hall, 2011.
- OGATA, Katsuhiko. Engenharia de controle moderno. 5. ed. São Paulo: Pearson Education do Brasil, 2010.

- DORF, Richard C.; BISHOP, Robert H. Sistemas de controle modernos. 11. ed. Rio de Janeiro: LTC, 2009.
- FRANKLIN, Gene F.; POWEL, J. David; EMANI-NAEINI, Abbas. Feedback control of dynamic systems. 6th. ed. Upper Saddle River, N.J.: Pearson, 2010.
- OGATA, Katsuhiko. MATLAB®: for control engineers. Upper Saddle River, NJ: Prentice Hall, 2008.
- GILAT, Amos. Matlab com aplicações em engenharia. 2. ed. Porto Alegre: Bookman, 2005.
- SOUZA, Antonio Carlos Zambroni de. Projetos, simulações e experiências de laboratório em sistemas de controle. Rio de Janeiro: Interciência, 2014.
- SOUZA, Antonio Carlos Zambroni; PINHEIRO, Carlos Alberto Murari. Introdução à modelagem, análise e simulação de sistemas dinâmicos. Rio de Janeiro: Interciência, 2008.

• CAPELLI, Alexandre. Automação industrial: controle do movimento e processos contínuos. 2. ed. São Paulo: Érica, 2008.

Disciplina:	LABORATÓRIO DE CONTROLE DE PROCESSOS CONTÍNUOS
Abreviação:	CTR8.5

Referências Básicas

- SMITH, Carlos A. Princípios e prática do controle automático de processo. 3. ed. Rio de Janeiro: LTC, c2008.
- MAYA, Paulo Alvaro; LEONARDI, Fabrizio. Controle essencial. São Paulo: Prentice Hall, 2011.
- OGATA, Katsuhiko. Engenharia de controle moderno. 5. ed. São Paulo: Pearson Education do Brasil, 2010.

Referências Complementares

- DORF, Richard C.; BISHOP, Robert H. Sistemas de controle modernos. 11. ed. Rio de Janeiro: LTC. 2009.
- FRANKLIN, Gene F.; POWEL, J. David; EMANI-NAEINI, Abbas. Feedback control of dynamic systems. 6th. ed. Upper Saddle River, N.J.: Pearson, 2010.
- OGATA, Katsuhiko. MATLAB®: for control engineers. Upper Saddle River, NJ: Prentice Hall, 2008.
- GILAT, Amos. Matlab com aplicações em engenharia. 2. ed. Porto Alegre: Bookman, 2005.
- SOUZA, Antonio Carlos Zambroni de. Projetos, simulações e experiências de laboratório em sistemas de controle. Rio de Janeiro: Interciência, 2014.
- SOUZA, Antonio Carlos Zambroni; PINHEIRO, Carlos Alberto Murari. Introdução à modelagem, análise e simulação de sistemas dinâmicos. Rio de Janeiro: Interciência, 2008.
- CAPELLI, Alexandre. Automação industrial: controle do movimento e processos contínuos. 2. ed. São Paulo: Érica, 2008.

Disciplina:	CONTROLADORES DIGITAIS PROGRAMÁVEIS
Abreviação:	CTR8.6

Referências Básicas

- WILHELM Jr,R.E.; Programmable controler handbook; HydenBooks/3ed/1987.
- NATALE, Ferdinando. Automação industrial. 9. ed. São Paulo: Érica, 2007.
- PRUDENTE, Francesco. Automação industrial: PLC: teoria e aplicações: curso básico. 2. ed. Rio de Janeiro: LTC, 2011.
- GEORGINI, Marcelo. Automação aplicada: descrição e implementação de sistemas sequenciais com PLCs . 9. ed. São Paulo: Érica, 2007.

Referências Complementares

- MACHADO, Aryoldo. O comando numérico aplicado às máquinas ferramenta. São Paulo: Ícone, c1986.
- ROQUE, Luiz Alberto Oliveira Lima. Automação de processos com linguagem Ladder e sistemas supervisório. Rio de Janeiro: LTC, 2014.
- SILVEIRA, Paulo Rogério da. Automação e controle discreto. 9. ed. São Paulo: Érica, 2009.
- OLIVEIRA, Júlio César Peixoto de. Controlador programável. São Paulo: Makron Books, 1993.
- MORAES, Cícero Couto de. Engenharia de automação industrial. 2. ed. Rio de Janeiro: LTC, c2007.

Disciplina: MODELAMENTO DE SISTEMAS DE CONTROLE

Abreviação: CTR8.7

Referências Básicas

- OGATA. Katsuhiko; Engenharia de Controle Moderno. Pearson, 2003. São Paulo. 4. ed.
- DORF, R.C. Sistemas de Controle Moderno. 8. ed. LTC, 2001. Rio de Janeiro.
- NISE, N. S. Engenharia de Sistemas de Controle. 5. ed. LTC, 2011. Rio de Janeiro.

Referências Complementares

- CARVALHO, J. L.LTC, 2000. Rio de Janeiro. Sistemas de Controle Automático.
- OGATA, K. MATLAB for Control Engineers. Pearson. 2008. Upper Saddle River.
- MAYA, p. A. LEONARD, Fabrizio. Controle Essencial. Pearson, São Paulo, 2011.
- HEMERLY, E. M. Controle por Computador de Sistemas Dinâmicos. Blucher. 2. ed. 2007. São Paulo.
- FRANKLIN, G. F., Powell, J. D., EMAMI-NAEINI, A. Feedback Control of Dynamic Systems. 6th. ed. Pearson, Upper Saddle River. 2010.

Disciplina:	SISTEMAS DE CONTROLE DE PROCESSOS DISCRETOS:
Abreviação:	CTR8.8

Referências Básicas

- NISE, Norman S, Engenharia de sistemas de controle, 3ed, RJaneiro, LTC 2002.
- HEMERLY, Elder M. Controle por computador de sistemas dinâmicos, 2ed, São Paulo. Blucher, 2000.
- ROBERTS, Michael J, Fundamentos em sinais e sistemas, São Paulo. McGrawHill, 2009.

Referências Complementares

- AGUIRRE, L.A. Enciclopédia de automática, controle e automação, São Paulo, Blucher 2007.
- AGUIRRE, L.A., Introdução a identificação de sistemas: técnicas lineares e não lineares aplicadas a sistemas reais, 3ed, Belo Horizonte, Ed.UFMG 2007.
- BOLTON, Willian. Engenharia de Controle. São Paulo: Makron, 1995.
- OPPENHEIM, A. V. E SHAFER, R. W., Discrete-Time Signal Processing.
- DORF, R.C. Modern Control Systems, 6th ed. Reading,
- AKIYOSHI, Nishinari. Controle automático de processos industriais, 2ed.São Paulo, Pearson, 2012.
- ALVES, Jose L. Loureiro. Instrumentação, controle e automação de processos, Rio de Janeiro, \LTC 2005.
- CAMPOS, Mario Cesar Massa, TEIXEIRA, Herbert C.G. Controles típicos de equipamentos de processos industriais, São Paulo. Blucher, 2006.
- CARVALHO, J.L.M, Sistemas de controle automático, Rio de Janeiro, LTC 2000.
- FIALHO, Arivelto Bustamante. Instrumentação industrial, conceitos aplicações e analises, 7ed, São Paulo, Erica 2010.
- OGATA. Katsuhiko. Discrete time control systems, 2ed, NewJersey: Prentice Hall, 1965.

Disciplina:	LABORATÓRIO DE SISTEMAS DE CONTROLE DE PROCESSOS DISCRETOS
Abreviação:	CTR8.9

Referências Básicas

- NISE, Norman S, Engenharia de sistemas de controle, 3ed, Rio de Janeiro. LTC 2002.
- HEMERLY, Elder M. Controle por computador de sistemas dinâmicos, 2ed, São Paulo. Blucher, 2000.
- ROBERTS, Michael J, Fundamentos em sinais e sistemas, São Paulo. McGraw Hill, 2009.

Referências Complementares

- AGUIRRE, L.A. Enciclopédia de automática, controle e automação, São Paulo. Blucher 2007.
- AGUIRRE, L.A., Introdução a identificação de sistemas: técnicas lineares e não lineares aplicadas a sistemas reais, 3ed, Belo Horizonte. Ed. UFMG 2007.
- BOLTON, Willian. Engenharia de Controle. São Paulo: Makron, 1995.
- OPPENHEIM, A. V. E SHAFER, R. W., Discrete-Time Signal Processing.
- DORF, R.C. Modern Control Systems, 6th ed. Reading.
- AKIYOSHI, Nishinari. Controle automático de processos industriais, 2ed.São Paulo, Pearson, 2012.
- ALVES, Jose L. Loureiro, Instrumentação, controle e automação de processos, Rio de Janeiro, \LTC 2005.
- CAMPOS, Mario Cesar Massa, TEIXEIRA, Herbert C.G. Controles típicos de equipamentos de processos industriais, São Paulo. Blucher, 2006.
- CARVALHO, J.L.M, Sistemas de controle automático, Rio de Janeiro. LTC 2000.
- FIALHO, Arivelto Bustamante. Instrumentação industrial, conceitos aplicações e análises, 7ed, São Paulo. Erica 2010.
- OGATA. Katsuhiko. Discrete time control systems, 2ed, New Jersey: Prentice Hall, 1965.

Disciplina:	CONTROLE MODERNO MULTIVARIÁVEL
Abreviação:	CTR8.10

Referências Básicas

- OGATA, Katsuhiko. Engenharia de controle moderno. São Paulo: Pearson, 2003.
- D'AZZO, John Joachim; HOUPIS, Constantine H. Análise e projeto de sistemas de controle lineares. 2. ed. Rio de Janeiro: Guanabara Dois, 1984.
- DORF, Richard C. Sistemas de Controle Moderno. 8 ed. São Paulo, Ed. LTC, 2001.

Referências Complementares

- SILVEIRA, Paulo Rogério da; SANTOS, Winderson E. dos. Automação e controle discreto. 9. ed. São Paulo: Érica, 2009.
- CARVALHO, J.L.M. Sistemas de Controle Automático. São Paulo, Ed. LTC, 2000.
- LIPSCHUTZ, S., LIPSON, M. L. Álgebra linear. 4. ed. Porto Alegre, RS: Bookman, 2011.
- SANTOS, R. J. Um curso de geometria analítica e álgebra linear. Belo Horizonte: Imprensa Universitária da UFMG, 2013. Disponível: http://www.mat.ufmg.br/~regi/livros.html.

EIXO 09: AUTOMAÇÃO INDUSTRIAL

Disciplina:	REDES INDUSTRIAIS DE AUTOMAÇÃO
Abreviação:	AUT9.1

Referências Básicas

- LUGLI, Alexandre Baratella. Redes industriais para automação industrial: AS-I, PROFIBUS e PROFINET. São Paulo: Érica, 2011.
- LUGLI, A. B.; SANTOS, M. M. Redes industriais: características, padrões e aplicações. São Paulo: Érica, 2015.
- AGUIRRE, Luiz Antônio. Enciclopédia de automática: controle e automação Vol. II. São Paulo: Blucher, c2007.

- TOVAR, Eduardo Manuel de Médicis. Redes de comunicação industriais do tipo field bus, integração em ambiente CIM. Repositório Aberto da Universidade do Porto, 2012. Disponível em: http://hdl.handle.net/10216/11753s
- PASADAS, Rosa Maria Charneca; FONSECA, José Alberto Gouveia. Dynamic Scheduling in Industrial Networks; escalonamento dinâmico para redes industriais. 2013.
- MARQUES, Maria Celeste Pereira. Análise do comportamento dinâmico de redes eléctricas industrias com cogeração. Repositório Aberto da Universidade do Porto, 2012.
- SANTOS, Veríssimo Manuel Brandão Lima. Arquiteturas de comunicação industrial para suporte a sistemas computacionais móveis. Repositório Aberto da Universidade do Porto, 2012. Disponível em: https://repositorio-aberto.up.pt/handle/10216/10949
- GODOY, Eduardo P., LOPES, Wellington C., SOUSA, Rafael V., PORTO, Arthur J. V. Modelagem e simulação de redes de comunicação baseadas no protocolo CAN controller área network modeling and simulation of CAN-based comunication networks. SBA: Controle & Automação Sociedade Brasileira de Automática, 01 August 2010, Vol.21, pp.425-438.

Disciplina:	SISTEMAS DE CONTROLES INTELIGENTES
Abreviação:	AUT9.2

- CAMPOS, Mario Massa de. Sistemas inteligentes em controle e automação de processos. Rio de Janeiro: Ciência Moderna, 2004.
- AGUIRRE, Luis Antônio (editor). Enciclopédia de automática: controle e automação. São Paulo: Blucher, c2007.
- PALMA NETO, Luiz Garcia. Introdução às redes neurais construtivas. São Paulo: Ed. UFSCar, 2005.

Referências Complementares

- BITTENCOURT, Guilherme. Inteligência artificial: ferramentas e teorias. 3. ed. Florianópolis: Ed. da UFSC, 2006.
- RRUSSELL, Stuart J. Inteligência artificial. 3. ed. Rio de Janeiro: Elsevier, c2013.
- COSTA, Ernesto. Inteligência artificial: fundamentos e aplicações. 2. ed. Lisboa: FCA Editora de Informática, 2008.
- KOVÁCS, Zsolt Laszlo. Redes neurais artificiais: fundamentos e aplicações. 4. ed. São Paulo: Livraria da física, 2006.
- LUGER, George F. Inteligência artificial: estruturas e estratégias para a resolução de problemas complexos. 4. ed. Porto Alegre: Bookman, 2004.
- NASCIMENTO JÚNIOR, Cairo Lúcio. Inteligência artificial em controle e automação. São Paulo: Edgard Blucher, 2000.

Disciplina:	LABORATÓRIO DE SISTEMAS INTELIGENTES E DSP'S
Abreviação:	AUT9.3

Referências Básicas

- CAMPOS, Mario Massa de. Sistemas inteligentes em controle e automação de processos. Rio de Janeiro: Ciência Moderna, 2004.
- AGUIRRE, Luis Antonio. Enciclopédia de automática: controle e automação. São Paulo: Blucher, c2007.
- PALMA NETO, Luiz Garcia. Introdução às redes neurais construtivas. São Paulo: EdUFSCar, 2005.
- AGUIAR, H. e JR. Oliveira. Inteligência computacional: aplicada à administração, economia e engenharia em Matlab. São Paulo: Thomson, 2007.

- BITTENCOURT, Guilherme. Inteligência artificial: ferramentas e teorias. 3. Ed. rev. Florianópolis: Ed. da UFSC, 2006.
 - RUSSELL, Stuart J. Inteligência artificial. 3. ed. Rio de Janeiro: Elsevier, c2013.
 - COSTA, Ernesto. Inteligência artificial: fundamentos e aplicações. 2. Ed. rev. Lisboa: FCA Editora de Informática, 2008.
- KOVÁCS, Zsolt Laszlo. Redes neurais artificiais: fundamentos e aplicações. 4. ed. São Paulo: Livraria da física, 2006.
- LUGER, George F. Inteligência artificia : estruturas e estratégias para a resolução de problemas complexos. 4. ed. Porto Alegre: Bookman, 2004.
- NASCIMENTO JÚNIOR, Cairo Lúcio. Inteligência artificial em controle e automação. São Paulo: Edgard Blucher, 2000.

Disciplina:	PROCESSAMENTO DIGITAL DE SINAIS
Abreviação:	AUT9.4

- GONZALEZ, Rafael C. Processamento digital de imagens. 3. ed. São Paulo: Pearson, c2010.
- OPPENHEIM, Alan V. Processamento em tempo discreto de sinais. 3. ed. São Paulo: Pearson Education do Brasil, c2013.
- KUO, Sen M. Digital signal processors: architectures, implementations, and applications. Upper Saddle River, N.J.: Pearson Prentice Hall, c2005.

Referências Complementares

- CRÓSTA, Álvaro Penteado. Processamento digital de imagens de sensoriamento remoto. Campinas: UNICAMP, c1992.
- COSTA, Cesar da. Elementos de lógica programável com VHDL e DSP: teoria e prática. São Paulo: Érica, 2011.
- SOUZA, Vitor Amadeu. Programação em C para o DSPIC: fundamentos. São Paulo: Ensino Profissional, 2008.
- GILAT, Amos. Matlab com aplicações em engenharia. 2. ed. Porto Alegre: Bookman, c2005.
- OGATA, Katsuhiko. MATLAB: for control engineers. Upper Saddle River, NJ: Prentice Hall, c2008.

Disciplina:	INTRODUÇÃO À ROBÓTICA INDUSTRIAL
Abreviação:	AUT9.5

Referências Básicas

- MATARIC, M. J. Introdução à robótica.1 ed., (H. Ferasoli Filho, J. R. Silva, & S. d. Alves, Trads.). São Paulo: Editora Unesp/ Blucher, 2014.
- NIKU, S. B. Introdução à robótica: análise, controle, aplicações. 2.ed., (S. G. Taboada, Trad.). Rio de Janeiro: LTC, 2014.
- CRAIG, J. J. Robótica. 3 ed. (H. C. Souza, Trad.). São Paulo: Pearson Education do Brasil, 2012.

Referências Complementares

- AGUIRRE, Luis Antonio. Enciclopédia de automática: controle e automação. São Paulo: Blucher, c2007.
- SALANT, Michael A. Introdução à robótica. São Paulo: Makron, 1990. ROSÁRIO, João Maurício. Princípios de mecatrônica. São Paulo: Pearson Education do Brasil, c2005.
- OLIVEIRA JÚNIOR, Hime Aguiar. Inteligência Computacional: aplicada à administração, economia e engenharia em Matlab. São Paulo: Thomson, 2007.
- ANGULO USATEGUI, José M. Manual prático de robótica. São Paulo: Hemus, 199-.
- KAMM, Lawrence J. Understanding electro-mechanical engineering: an introduction to mechatronics. New York: IEEE, c1966.

Disciplina:	SISTEMAS DISTRIBUÍDOS EM AUTOMAÇÃO INDUSTRIAL
Abreviação:	AUT9.6

Referências Básicas

- TANENBAUM, Andrew S.; STEEN, Maarten Van. Sistemas Distribuídos: Princípios e Paradigmas. 2. ed. São Paulo: Pearson Prentice Hall, 2008.
- COULOURIS, George; DOLLIMORE, Jean; KINDBERG, Tim; BLAIR, Gordon. Sistemas Distribuídos: Conceitos e Projeto. 5. ed. Porto Alegre: Bookman, 2013.
- TANENBAUM, Andrew S. Redes de computadores. 5. ed. São Paulo: Pearson Education, 2011.

Referências Complementares

• TANENBAUM, Andrew S. Sistemas operacionais modernos. 2. ed. São Paulo: Prentice-Hall, 2003.

- STALLINGS, William. Data and computer communications. 8. ed. Upper Saddle River, N.J.: Pearson Prentice Hall, 2007.
- LUGLI, Alexandre Baratella. Redes industriais: características, padrões e aplicações. São Paulo: Érica, 2014.
- LUGLI, Alexandre Baratella. Redes industriais para automação industrial: AS-I, PROFIBUS e PROFINET. São Paulo: Érica, 2011.
- FILIPPO FILHO, Guilherme. Automação de processos e de sistemas. São Paulo: Érica, 2014.

Disciplina:	SISTEMAS SUPERVISÓRIOS E INTERFACES HOMEM-MÁQUINA
Abreviação:	AUT9.7

- ROQUE, Luiz Alberto Oliveira Lima. Automação de processos com linguagem Ladder e sistemas supervisórios. Rio de Janeiro: LTC, 2014.
- SANTOS, Max M. D. Supervisão de Sistemas Funcionalidades e Aplicações. São Paulo: Erica, 2014.
- BRANQUINHO, M., MORAES, L C., SEIDL, J., AZEVEDO, J., BRANQUINHO, T. B.Segurança de Automação Industrial e Scada. Sao Paulo: Elsevier. 2014.

Referências Complementares

- DE QUEIROZ, M. H., CURY, J.E.R. Controle supervisório modular de sistemas de manufatura. Controle and Automação. May 2002, Vol.13, pp.123-133. Scopus (Elsevier B.V)
- ZAPATA, Germán; CARDILLO, Juan; CHACÓN, Edgar. Methodological contributions for the design of supervision systems of continuos processes. Información tecnológica, 2011, Vol.22, pp.97-114. Disponível em: http://dx.doi.org/10.4067/S0718-07642011000300012
- COSTA, Eduard Montgomery Meira; LIMA, Antonio Marcus Nogueira. Synthesis of supervisors for time-varying discrete event systems. SBA: Controle & Automação Sociedade Brasileira de Automática, 01 December 2004, Vol.15, pp.367-387.
- SOARES, Lennedy C.; MAITELLI, André L.; MEDEIROS, Adelardo A. D. Sisal: um sistema supervisório para poços de petróleo. SBA: Controle & Automação Sociedade Brasileira de Automática, 01 December 2011, Vol.22, pp.631-637.
- PARRA ORTEGA, Carlos Arturo. Modelado conceptual de la supervisión de un sistema holónico de producción continua. Lámpsakos, 2012, Issue 7, pp.19-30.

Disciplina:	SEGURANÇA E CONFIABILIDADE DE SISTEMAS DE CONTROLE E AUTOMAÇÃO
Abreviação:	AUT9.8

Referências Básicas

- MORAES, Cicero C. M.; CASTRUCCI, Plinio. Engenharia de automação industrial. 2. Ed. Rio de Janeiro: Editora LTC, 2007.
- BEGA, Egídio Alberto. Instrumentação industrial. 2. ed. Editora Interciência, 2006.
- KARDEC, Alan. Manutenção: função estratégica. 3. ed. Rio de Janeiro: Qualitymark, 2009.

- HINES, Willian W. Probabilidade e estatística na engenharia. 4. ed. Rio de Janeiro: LTC, 2006.
- BRANQUINHO, M., MORAES, L C., SEIDL, J., AZEVEDO, J., BRANQUINHO, T. B. Segurança de Automação Industrial e Scada. São Paulo: Elsevier, 2014.
- BARROS, Victor Freitas de Azeredo; MENEZES, José Elmo de. Estudos de Confiabilidade na Modelagem de Sistemas. Cadernos de Educação, Tecnologia e Sociedade, 01 October 2010, Vol.1, pp.86-103.
- SELLITTO, Miguel Afonso. Formulação estratégica da manutenção industrial com base na confiabilidade dos equipamentos. Produção, 01 April 2005, Vol.15, pp.44-59.

EIXO 10: PRÁTICA PROFISSIONAL E INTEGRAÇÃO CURRICULAR

Disciplina:	TRABALHO DE CONCLUSÃO DE CURSO I
Abreviação:	TCC10.1

Referências Básicas

- MARCONI, Marina de Andrade; LAKATOS, Eva Maria. Fundamentos de metodologia científica. São Paulo: Atlas, 2003.
- MARCONI, Marina de Andrade; LAKATOS, Eva Maria. Metodologia Científica. São Paulo: Atlas, 1988.
- VASCONCELLOS, Ana Cristina de; FRANÇA, Júnia Lessa. Manual para normalização de publicações técnico-científicas. Belo. Horizonte: UFMG, 2007.

Referências Complementares

- BRAGA, Marco; GUERRA, Andreia; REIS, José Claudio. Breve história da ciência moderna. Rio de Janeiro: Jorge Zahar, 2004.
- CASTRO, Cláudio de Moura. Como redigir e apresentar um trabalho científico. São Paulo: Pearson Education do Brasil, 2011.
- CERVO, Amado Luiz. Metodologia Científica. São Paulo: Pearson Prentice Hall, 2007.
- MOSLEY, Michael; LYNCH, John. Uma história da ciência. Rio de Janeir: Zahar, 2011.
- PAHL, Gerhard et al. Projeto na engenharia: fundamentos do desenvolvimento eficaz de produtos, métodos e aplicações. São Paulo: Edgard Blucher, 2005.

Disciplina:	TRABALHO DE CONCLUSÃO DE CURSO II
Abreviação:	TCC10.2

Referências Básicas

- ZAGO, Valéria C. P. Manual para Elaboração de Trabalho de Conclusão de Curso I e II.CEFET/MG, 2014.
- MARCONI, Marina de Andrade. LAKATOS, Eva Maria. Metodologia Científica. 5 ed. revis. São Paulo: Editora Atlas S.A., 2011.
- CASTRO, Claudio de Moura e. Como redigir e apresentar um trabalho acadêmico. São Paulo: Pearson Prentice Hail, 2011.

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR6023: informação e documentação referências elaboração. Rio de Janeiro, 2002.
- NBR6024: numeração progressiva das seções de um documento. Rio de Janeiro, 2003.
- NBR6027: sumário. Rio de Janeiro, 2003.
- NBR6028: informação e documentação: resumos apresentação. Rio de Janeiro, 2003.
- NBR10520: informação e documentação citações em documentos apresentação. Rio de Janeiro, 2002.
- NBR14724: informação e documentação trabalhos acadêmicos apresentação. Rio de Janeiro, 2011.
- BARBETTA, Pedro Alberto. Estatística aplicada às ciências sociais. 7. ed. rev. Florianópolis: UFSC, 2007.

- BRANDÃO, Carlos Rodrigues. Pesquisa participante. São Paulo: Brasiliense, 1984.
- CHIZZOTTI, Antônio. Pesquisa em ciências humanas sociais. 8. ed. São Paulo: Cortez, 2006.
- FRANÇA, Júnia Lessa. Manual de normalização de publicações técnico-científicas. 8. ed. Belo Horizonte: UFMG, 2008. 246 p.
- LAKATOS, Eva Maria; MARCONI, Marina de Andrade. Técnicas de Pesquisa. 7. ed. São Paulo: Atlas, 2008. 282 p.
- OLIVEIRA, Silvio Luis de. Tratado de metodologia científica: projetos de pesquisas, TGI, TCC, monografias, dissertações e teses. 2. ed. São Paulo: Pioneira, 2000. 320p.
- RUDIO, Franz Victor. Introdução ao projeto de pesquisa. 31. ed. Petrópolis: Vozes, 2003. 144 p.
- SEVERINO, Antônio Joaquim. Metodologia do trabalho científico. 23. ed. Revisada e Atualizada. São Paulo: Cortez, 2007. 304 p.
- TOMASI, Carolina; MEDEIROS, João Bosco. Comunicação científica: normas técnicas para redação científica. São Paulo: Atlas, 2008. 260 p.

Disciplina:	ESTÁGIO SUPERVISIONADO
Abreviação:	TES10.3

- CERVO, A. L.; BERVIAN, P. A.; SILVA, R. da Metodologia científica. 6. ed. São Paulo: Pearson Prentice Hall, 2007.
- ROESCH, S. M. A. Projetos de estágio e de pesquisa em administração: guia para estágios, trabalhos de conclusão, dissertações e estudos de caso. 3. ed. São Paulo: Atlas, 2009.
- MARCONI, M. de A; LAKATOS, E. M. Fundamentos de metodologia científica. 7. ed. São Paulo: Atlas, 2010.

Referências Complementares

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10719: apresentação de relatórios técnicos-científicos. Rio de Janeiro, 2001.
- BERVIAN, P. A. Metodologia científica. São Paulo: Makron Books, 2002.
- MARCONI, M. A.; LAKATOS, E. M. Fundamentos de metodologia científica. São Paulo: Atlas, 2001.
- OLIVEIRA, S. L. Trabalho de metodologia científica: projetos de pesquisa, TGI, TCC, monografias, dissertações e teses. 2. ed. São Paulo: Pioneira, 2000.
- SEVERINO, A. J. Metodologia do trabalho científico. 22. ed. rev. e ampl. São Paulo: Cortez, 2003. 336 p.

Disciplina:	ESTÁGIO SUPERVISIONADO
Abreviação:	ESTG10.4

Referências Básicas

- CERVO, A. L.; BERVIAN, P. A.; SILVA, R. da Metodologia científica. 6. ed. São Paulo: Pearson Prentice Hall, 2007.
- ROESCH, S. M. A. Projetos de estágio e de pesquisa em administração: guia para estágios, trabalhos de conclusão, dissertações e estudos de caso. 3. ed. São Paulo: Atlas, 2009.
- MARCONI, M. de A; LAKATOS, E. M. Fundamentos de metodologia científica. 7. ed. São Paulo: Atlas, 2010.

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10719: apresentação de relatórios técnicos-científicos. Rio de Janeiro, 2001.
- BERVIAN, P. A. Metodologia científica. São Paulo: Makron Books, 2002.

- MARCONI, M. A.; LAKATOS, E. M. Fundamentos de metodologia científica. São Paulo: Atlas, 2001.
- OLIVEIRA, S. L. Trabalho de metodologia científica: projetos de pesquisa, TGI, TCC, monografias, dissertações e teses. 2. ed. São Paulo: Pioneira, 2000.
- SEVERINO, A. J. Metodologia do trabalho científico. 22. ed. rev. e ampl. São Paulo: Cortez, 2003. 336 p.

Disciplina:	METODOLOGIA CIENTÍFICA
Abreviação:	MCC10.5

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10520: apresentação de citações de documentos. Rio de Janeiro, 2001.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6023: informação e documentação: referências – elaboração. Rio de Janeiro, 2002.
- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 14724: informação e documentação: trabalhos acadêmicos apresentação. Rio de Janeiro, 2005.

Referências Complementares

- ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10719: apresentação de relatórios técnicos-científicos. Rio de Janeiro, 2001.
- BERVIAN, P. A. Metodologia científica. São Paulo: Makron Books, 2002.
- MARCONI, M. A.; LAKATOS, E. M. Fundamentos de metodologia científica. São Paulo: Atlas, 2001.
- OLIVEIRA, S. L. Trabalho de metodologia científica: projetos de pesquisa, TGI, TCC, monografias, dissertações e teses. 2. ed. São Paulo: Pioneira, 2000.
- SEVERINO, A. J. Metodologia do trabalho científico. 22. ed. rev. e ampl. São Paulo: Cortez, 2003. 336 p.

Disciplina:	METODOLOGIA DE PESQUISA
Abreviação:	MPC10.6

Referências Básicas

- CERVO, A. L.; BERVIAN, P. A.; SILVA, R. da Metodologia científica. 6. ed. São Paulo: Pearson Prentice Hall, 2007.
- SEVERINO, A. J. Metodologia do trabalho científico. São Paulo: Cortez, 2006.
- MARCONI, M. de A.; LAKATOS, E. M. Fundamentos de metodologia científica. 7. ed. São Paulo: Atlas, 2010.

- BARROS, A. J. da S.; LEHFELD, N. Fundamentos da metodologia científica: um guia para a iniciação científica. 2.ed. São Paulo: Makron Books, 2000.
- CHASSOT, Á. A ciência através dos tempos. São Paulo: Moderna, 2004.
- RAMPAZZO, L. Metodologia científica: para alunos dos cursos de graduação e pós-graduação. São Paulo: Loyola, 2013.
- ROESCH, S. M. A. Projetos de estágio e de pesquisa em administração: guia para estágios, trabalhos de conclusão, dissertações e estudos de caso. 3. ed. São Paulo: Atlas, 2009.
- TOBIAS, J.A. Como fazer sua pesquisa. 3 ed. São Paulo: AM, 1992.

FOLHA DE ASSINATURAS

Emitido em 19/05/2020

PROJETO DE CURSO Nº Projeto/2020 - CEAIAX (11.51.16) (Nº do Documento: 12)

(Nº do Protocolo: NÃO PROTOCOLADO)

(Assinado digitalmente em 25/05/2020 08:57) ABELARDO BENTO ARAUJO COORDENADOR - TITULAR

CADG (11.51.03) Matrícula: 2090845

Para verificar a autenticidade deste documento entre em https://sig.cefetmg.br/documentos/ informando seu número: 12, ano: 2020, tipo: PROJETO DE CURSO, data de emissão: 25/05/2020 e o código de verificação: 3561a55ac9