MINISTERIO DA EDUCAÇÃO

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

Plano de Ensino Unidade Araxá

DISCIPLINA: Física II **CÓDIGO**: FIS02

Período Letivo: 1º Semestre / 2018

Carga Horária: Total: 72 H/A – 60 Horas Semanal: 04 aulas Créditos: 04

Modalidade: Teórica

Classificação do Conteúdo pelas DCN: Básica Professor(a) Responsável: Dr. Paulo Azevedo Soave

Ementa:

Carga elétrica e matéria; lei de Coulomb; o campo elétrico; fluxo elétrico lei de Gauss; potencial elétrico; capacitores e dielétricos; corrente elétrica; resistência elétrica; força eletromotriz; circuitos de corrente contínua; campo magnético; lei de Ampére; indução eletromagnética; lei de Faraday; ondas eletromagnéticas; lei de Lenz; indutância e energia do campo magnético; circuitos de corrente alternada.

Curso	Período	Eixo	Natureza
Engenharia de Automação Industrial	3	Física e Química	Obrigatória

Departamento: Departamento de Eletromecânica (DELMAX)

INTERDISCIPLINARIEDADES

INTERDIOUI EINARIEDADEO	
Pré-requisitos	
Física I, Cálculo II	
Co-requisitos	
Não há	
Disciplinas para as quais é pré-requisito / co-requisito	
Física Experimental I	

Obj	Objetivos: A disciplina devera possibilitar ao estudante					
1	Aplicar os fundamentos básicos de física na resolução de problemas o	do				
	eletromagnetismo aplicados à área de engenharia.					
2	Compreender o estudo da física como formulação sistematizada	е				
	instrumentada pelos resultados do cálculo diferencial e integral.					

Uni	dades de ensino	Carga horária Horas-aula
1	Cargas elétricas, Condutores e Isolantes, Lei de Coulomb, Conservação da carga.	4
2	Campo Elétrico, Linhas de Campo, Campos Elétricos	
	produzidos por cargas pontuais, Dipolos, Linhas de Carga, e	

MINISTERIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUC

CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS

Plano de Ensino Unidade Araxá

	Disco Carregado, Dinâmica de Dipolo e Cargas Simples em Campos Diversos.	
3	Lei de Gauss, Fluxo de Campo, Equivalência Gauss/Coulomb, Aplicação da Lei de Gauss a diversas simetrias.	8
4	Energia Potencial Elétrica, Potencial Elétrico, Superfícies equipotenciaos, Cálculo do Potencial a Partir do Campo, Potencial Produzido em diversas simetrias, Campo Elétrico a partir do Potencial, Energia Potencial Elétrica em sistemas de cargas.	8
5	Capacitância, Cálculo da Capacitância em diversas geometrias de cargas, Energia armazenada em um Capacitor, Associação de Capacitores. Dielétricos e a Lei de Gauss.	8
6	Corrente Elétrica, Resistência elétrica, Lei de Ohm, Potencia de elementos de circuito, Trabalho Energia e Força Eletromotriz, Cálculo de corrente em circuitos de uma ou mais malhas, Diferença de Potencial, Amperímetro e Voltímetro. Circuitos RC	8
7	Campo Magnético, Campos Cruzados, Efeito Hall, Campo Magnético produzido por corrente Lei de Ampère, aplicação em diversas geometrias.	8
8	Lei de indução de Faraday, Lei de Lenz, Indução e transferência de energia, campos elétricos induzidos, auto indução.	6
9	Ondas Eletromagnéticas, Equações de Maxwell.	6
	Avaliações	10
	Total	72

Bib	liografia Básica	
1	WALKER, J.; RESNICK, Robert; HALLIDAY, David. Fundamentos de física: eletromagnetismo. 8. ed. Rio de Janeiro: LTC, 2009, v.3.	
2	RESNICK, Robert; HALLIDAY, David; KRANE, Kenneth S. Física 3 . 5. ed. Rio de Janeiro: LTC, 2003. v.3.	
3	TIPLER, Paul A. Física para cientistas e engenheiros . 5. ed. Rio de Janeiro: LTC, 2006. v.2.	
Bibliografia Complementar		
1	SEARS, Francis; ZEMANSKY, Mark Waldo. Física 3: eletromagnetismo. 12.ed. São Paulo: Addison Wesley, 2008.	
2	WALKER, Jearl. O circo voador da física. 2 ed. Rio de Janeiro: LTC, 2008.	
3	BAUER, Wolfgang; WESTFALL, Gary D.; DIAS, Helio. Física para universitá-rios: Eletricidade e Magnetismo. São Paulo: AMGH, 2012. v.3.	
4	NUSSENZVEIG, H. M. Curso de física básica: eletromagnetismo . 4. ed. São Paulo: Edgar Blücher, 2002. v.3.	
5	HEWITT, Paul G. Física conceitual. 11. ed. Porto Alegre: Bookman, 2011.	

MINISTERIO DA EDUCAÇÃO CENTRO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE MINAS GERAIS DIRETORIA DE GRADUAÇÃO

Plano de Didático Unidade Araxá

DISCIPLINA: Física II CÓDIGO: FIS02

Período Letivo: 1º Semestre / 2018

Carga Horária: Total: 72 H/A – 60 Horas Semanal: 04 aulas Créditos: 04

Modalidade: Teórica

Classificação do Conteúdo pelas DCN: Básica Professor(a) Responsável: Dr. Paulo Azevedo Soave

Ementa:

Carga elétrica e matéria; lei de Coulomb; o campo elétrico; fluxo elétrico lei de Gauss; potencial elétrico; capacitores e dielétricos; corrente elétrica; resistência elétrica; força eletromotriz; circuitos de corrente contínua; campo magnético; lei de Ampére; indução eletromagnética; lei de Faraday; ondas eletromagnéticas; lei de Lenz; indutância e energia do campo magnético; circuitos de corrente alternada.

Curso	Período	Eixo	Natureza
Engenharia de Automação Industrial	3	Física e Química	Obrigatória

Departamento: Departamento de Eletromecânica (DELMAX)

Técnicas Utilizadas	Atividades Avaliativas	Valor
Aula expositiva em quadro	4 provas individuais de 19	76
Aula com uso de projetor multimídia	pontos cada (100 min).	
Trabalho individual	4 testes de 6 pontos cada.	24
Trabalho em grupo	(20 min)	
	Total	100

Atividades Complementares: Leitura prévia do livro adotado e resolução de exercícios.

Horário semanal e local para atendimento extraclasse aos alunos:

Local: Gabinete do Professor Horário: terças-feiras às 19h

Necessário agendar previamente via e-mail: pasoave@araxa.cefetmg.br

Professor responsável:	Data:
Prof. Dr. Paulo Azevedo Soave	10/02/2018
Coordenador do curso:	Data: